

Optimised density tailoring for dephasing mitigation in laser wakefield accelerators

in simulations...

Matthew Streeter & Samuel McLoughlin

Centre for Light Matter Interactions

Queen's University Belfast

Dephasing in Laser Wakefield Accelerators

The usable phase region for an electron LWFA is accelerating and focusing.

For the linear regime

 $a_0 \ll 1 \qquad \omega_p \ll \omega_L$

The group velocity of the laser is

$$v_g = c\sqrt{1 - \omega_p^2/\omega_L^2}$$

This sets the phase velocity of the wake and so the dephasing length is

$$L_{\phi} = \frac{\pi c}{2\omega_p} \frac{1}{\beta_g^{-1} - 1}$$
$$L_{\phi} \approx \pi c \frac{\omega_L^2}{\omega_p^3}$$

Dephasing in Laser Wakefield Accelerators

• Maximum electron energy reached for electrons injected behind peak field position

FBPIC simulation: $a_0 = 0.95$, guiding channel with $n_e = 5 \times 10^{17}$ cm⁻³

FBPIC simulations: R. Lehe et al., CPC, 2016

Dephasing can be removed in a plasma density gradient

Non-Linear regime

$$a_0 \ge 1 \qquad \omega_p \ll \omega_L$$

$$v_g < c\sqrt{1 - \omega_p^2/\omega_L^2}$$

$$L_{\phi} \neq \frac{\pi c}{2\omega_p} \frac{1}{\beta_g^{-1} - 1}$$

Dephasing can be removed in a plasma density gradient

Increasing plasma density reduces wavelength of plasma wave and rephases electrons

Dephasing can be prevented in a plasma density gradient

For $n_e \ll n_c$, the requirement for preventing dephasing [1-4]. $\frac{d}{dz} \left(\frac{\phi}{\omega_r(z)}\right) = \frac{1}{c} - \frac{1}{v_c} \qquad \phi = \text{electron phase in LWFA}$

For $a_0 \ll 1$, Pukhov [3] calculated the ideal density profile as, $n_e(z) = \frac{n_{e0}}{(1 - z/L_{\rm inh})^{2/3}}$ $L_{\rm inh} = \frac{c}{\omega} \left(\frac{n_c}{n_{e0}}\right)^{3/2} \frac{2\phi}{3}$

For highly non-linear LWFA, the above theory is not valid and the pulse evolution makes analytical treatment very difficult. Some experiments and simulations have shown approximate tailoring can still help [5-8].

- [1] T. Katsouleas, *Physical Review A* **33**, 2056–2064 (1986).
- [2] P. Sprangle et al. Phys. Rev. E 63, 056405 (2001).
- [3] A. Pukhov *Physical Review E* **77**, 025401 (2008).
- [4] W. Rittershofer et al. Phys. Plasmas 17 (6) 063104 (2010)
- [5] Z. Zhang et al New J. Phys. 17 103011 (2015)
- [6] E. Guillaume, et al. Phys. Rev. Lett. 115, 155002 (2015)
- [7] A. Döpp et al. Phys. Plasmas 23 (5): 056702 (2016)
- [8] C. Aniculaesei *et al.* Sci Rep 9, 11249 (2019).

Determining the ideal density profile "on-the-fly"

Calculating the next density step

Case A: Quasi linear LWFA with external injection

- $a_0 = 0.95$, guiding channel
- Initial on-axis plasma density $n_e = 5 \times 10^{17} \text{ cm}^{-3}$
- Initial laser energy = 1 J

Case A: Quasi linear LWFA with external injection

- $a_0 = 0.95$, guiding channel
- Initial on-axis plasma density n_e = 5 x 10¹⁷ cm⁻³
- Initial laser energy = 1 J

Ideal density matches theory until a_0 increases

Large increase in energy gain – especially for acceleration in 2nd period

Case B: Non-linear LWFA with external injection

Case C: Highly Non-linear LWFA with ionisation injection

4

3

2

0

 $-n_e = 1.2 \times 10^{18} \text{ cm}^{-3}$

10

8

6 z [mm] 12

 $-\phi = 3/4 \text{ OTF}$

 Produces 4 GeV, compared to 1.5 GeV from best constant density case

Summary and Outlook

- Simulations with on-the-fly density tuning can prevent dephasing even in highly non-linear LWFA
- Optimal tuning results in much higher electron energies
- This could allow LWFA to be purely depletion limited implying high efficiency
- Further work required to look at beam loaded cases
- Could potentially find tuning for other beam quantities
 - E.g. emittance preservation
 - Optimise beam loading
- This approach can help optimise experimental design practical realisation of density profiles is an important challenge