CC BY 4.0 DOI:10.5281/zenodo.8362549

Exascale and ML Models for Accelerator Simulations

Axel Huebl

6th European Advanced Accelerator Concepts workshop (EAAC'23)

WG3: Theory and simulations

Elba, Italy September 20th, 2023

Lawrence Berkeley National Laboratory

On behalf of the WarpX, ImpactX & pyAMReX teams LBNL, LLNL, SLAC, CEA, DESY, TAE, CERN

Funding Support

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early testbed platforms, in support of the nation's exascale computing imperative. This work was also performed in part by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and SLAC National Accelerator Laboratory under Contract No. AC02-76SF00515. Supported by the CAMPA collaboration, a project of the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research and Office of High Energy Physics. Scientific Discovery through Advanced Computing (SciDAC) program. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725, the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231, and the supercomputer Fugaku provided by RIKEN.

The **EAAC23 Workshop** was supported by the EU I.FAST project. This the European Union's **Horizon 2020** Research and Innovation programme under Grant Agreement No 101004730.

• Advanced Accelerator Modeling at Exascale

- WarpX and ImpactX in the Beam, Plasma and Accelerator Simulation Toolkit
- Addressing a Cambrian Explosion of Compute Architectures
- Plasma Mirror Simulations on the Full Size of the First Exascale Supercomputer

• Across Scales: Advanced and Conventional Accelerators

- Connecting Exascale and ML
- ML-Enabled, Hybrid Beamlines

Advanced Accelerator Modeling at Exascale

Ultimate goal: *virtual accelerator* with *on-the-fly tunability* of physics & numerics complexity to users

Goal Start-to-end modeling in an open software ecosystem.

> EXASCALE COMPUTING

SciDAC

ough Advanced Comput

Start-to-End Modeling R&D

- advanced models: numerics, AI/ML surrogates
- speed & scalability: team science with computer sci.
- flexibility & reliability: modern software ecosystem

Available Particle-in-Cell Loops

• electrostatic & electromagnetic (fully kinetic)

Advanced algorithms

boosted frame, spectral solvers, Galilean frame, embedded boundaries + CAD, MR, ...

Multi-Physics Modules

field ionization of atomic levels, Coulomb collisions, QED processes (e.g. pair creation), macroscopic materials

Geometries

 1D3V, 2D3V, 3D3V and RZ (quasicylindrical)

Cylindrical grid (schematic)

Multi-Node parallelization

- MPI: 3D domain decomposition
- dynamic load balancing

On-Node Parallelization

- GPU: CUDA, HIP and SYCL
- CPU: OpenMP

Scalable, Standardized I/O

- PICMI Python interface
- openPMD (HDF5 or ADIOS)
- in situ diagnostics

WarpX: conceived & developed by a multidisciplinary, multi-institution team

ImpactX: GPU-, AMR- & AI/ML-Accelerated Beam Dynamics

Particle-in-Cell Loop

- electrostatic
 - \circ with space-charge effects
- s-based
 - relative to a reference particle
 - elements: symplectic maps

Fireproof Numerics

based on IMPACT suite of codes, esp. IMPACT-Z and MaryLie

Triple Acceleration Approach

- GPU support
- Adaptive Mesh Refinement
- AI/ML & Data Driven Models

- User-Friendly
- single-source C++, full Python control
- fully tested
- fully documented

Multi-Node parallelization

- MPI: domain decomposition
- dynamic load balancing (in dev.)

On-Node Parallelization

- GPU: CUDA, HIP and SYCL
- CPU: OpenMP

Scalable, Parallel I/O

- openPMD
- in situ analysis

github.com/ECP-WarpX/impactx

ImpactX: Easy to Use, Extent, Tested and Documented

```
1 from impactx import ImpactX, elements
 3 sim = ImpactX()
8 fodo = [
       elements.Drift(ds=0.25, nslice=ns),
       elements.Quad(ds=1.0, k=1.0, nslice=ns),
       elements.Drift(ds=0.5, nslice=ns),
       elements.Quad(ds=1.0, k=-1.0, nslice=ns),
       elements.Drift(ds=0.25, nslice=ns),
       monitor,
15 ]
17 sim.lattice.extend(fodo)
20 sim.evolve()
```

Example: ImpactX FODO Cell Lattice

-	
INSTALLATION	
Users	
Developers	
НРС	
USAGE	
Run ImpactX	
Parameters: Python	
Parameters: Inputs File	
Examples	
FODO Cell	
Chicane	
Constant Focusing Channel	
Constant Focusing Channel with Space Charge	
Expanding Beam in Free Space	
Kurth Distribution in a Periodic Focusing Channel	
Kurth Distribution in a Periodic Focusing Channel with Space Charge	
Acceleration by RF Cavities	
FODO Cell with RF	
FODO Cell, Chromatic	
Chain of thin multipoles	

A nonlinear focusing channel based on the IOTA nonlinear lens

The "bare" linear lattice of the Fermilab IOTA storage ring

A / Examples

C Edit on GitHub

Examples

This section allows you to **download input files** that correspond to different physical situations or test different code features.

- FODO Cell
- Chicane
- Constant Focusing Channel
- Constant Focusing Channel with Space Charge
- Expanding Beam in Free Space
- Kurth Distribution in a Periodic Focusing Channel
- Kurth Distribution in a Periodic Focusing Channel with Space Charge
- Acceleration by RF Cavities
- FODO Cell with RF
- FODO Cell, Chromatic
- Chain of thin multipoles
- A nonlinear focusing channel based on the IOTA nonlinear lens
- The "bare" linear lattice of the Fermilab IOTA storage ring
- Solenoid channel
- Drift using a Pole-Face Rotation
- Soft-edge solenoid
- Soft-Edge Quadrupole
- Positron Channel
- Cyclotron
- Combined Function Bend
- Ballistic Compression Using a Short RF Element
- Test of a Transverse Kicker

github.com/ECP-WarpX/impactx

We Develop Openly with the Community

Online Documentation: warpx|hipace|impactx.readthedocs.io

LISAGE						
Run WarpX	For a complete list of all example input files, have a look at our					
Input Parameters	Examples/ directory. It contains folders and subfolders with self-					
Python (PICMI)	tested, so they should always be up-to-date.					
Examples						
Beam-driven electron acceleration	Beam-driven electron acceleration					
Laser-driven electron acceleration						
Plasma mirror	AMREX inputs:					
Laser-ion acceleration	• 🛓 2D case					
Uniform plasma	• 📥 2D case in boosted frame					
Capacitive discharge	• 🛓 3D case in boosted frame					

Open-Source Development & Benchmarks: github.com/ECP-WarpX

0	All checks have passed 24 successful and 1 neutral checks		
~	Tequest) Successful in 40m	Required	Details
~	😧 🗄 Windows / MSVC C++17 w/o MPI (pull_request) Successful in 58m		Details
~	O CUDA / NVCC 11.0.2 SP (pull_request) Successful in 31m	Required	Details
~	O HIP / HIP 3D SP (pull_request) Successful in 29m		Details
~	A Intel / oneAPI DPC++ SP (pull_request) Successful in 38m		Details
7	OpenMP / Clana pywarpx (pull request) Successful in 37m	Required	Details

230 physics benchmarks *run on every code change* of WarpX **19 physics benchmarks + 106 tests** *for* ImpactX

Rapid and easy installation on any platform:

conda install -c conda-forge warpx

python3 -m pip install .

brew tap ecp-warpx/warpx brew install warpx

cmake -S . -B build cmake --build build --target install

module load warpx module load py-warpx

Power-Limits Seed a Cambrian Explosion of Compute Architectures

Community Approaches to Exascale Programming

WarpX is now 500x More Performant than its Baseline

Figure-of-Merit: weighted updates / sec

Date	Code	Machine	$N_c/Node$	Nodes	FOM	-	
3/19	Warp	Cori	0.4e7	6625	2.2e10		
3/19	WarpX	Cori	0.4e7	6625	1.0e11		
6/19	WarpX	Summit	2.8e7	1000	7.8e11		
9/19	WarpX	Summit	2.3e7	2560	6.8e11		
1/20	WarpX	Summit	2.3e7	2560	1.0e12		
2/20	WarpX	Summit	2.5e7	4263	1.2e12		
6/20	WarpX	Summit	2.0e7	4263	1.4e12		
7/20	WarpX	Summit	2.0e8	4263	2.5e12		\mathbf{X}
3/21	WarpX	Summit	2.0e8	4263	2.9e12		$\overline{\mathbf{a}}$
6/21	WarpX	Summit	2.0e8	4263	2.7e12		
7/21	WarpX	Perlmutter	2.7e8	960	1.1e12		\Box
12/21	WarpX	Summit	2.0e8	4263	3.3e12		S
4/22	WarpX	Perlmutter	4.0e8	928	1.0e12		
4/22	WarpX	Perlmutter [†]	4.0e8	928	1.4e12		
4/22	WarpX	Summit	2.0e8	4263	3.4e12		
4/22	WarpX	Fugaku [†]	3.1e6	98304	8.1e12		
6/22	WarpX	Perlmutter	4.4e8	1088	1.0e12		
7/22	WarpX	Fugaku	3.1e6	98304	2.2e12		
7/22	WarpX	Fugaku [†]	3.1e6	152064	9.3e12		
7/22	WarpX	Frontier	8.1e8	8576	1.1e13		

2022 ACM Gordon Bell Prize: using the First Exascale Supercomputer

April-July 2022: WarpX on world's largest HPCs L. Fedeli, A. Huebl et al., *Gordon Bell Prize Winner* at SC'22, 2022

Fig. 1: Sketches showing the focusing of a high-power femtosecond laser (a) into a gas jet (b) onto a hybrid solid-gas target.

2022 ACM Gordon Bell Prize: using the First Exascale Supercomputer

2022 ACM Gordon Bell Prize: using the First Exascale Supercomputer

Atos

arm

SIKEN

GENC

<u>2</u>2

.....

BERKELEY LAF

A success story of a multidisciplinary, multi-institutional team!

L. Fedeli, A. Huebl et al., IEEE, SC22 (2022) M. Thévenet et al., Nat. Phys 12 (2016)

If You Want to Go Far, Go Together

DESY.

Argonne

National Laborator

mm

BERKELEY LAB

Standardization...

- Inputs
- Data

HZDR

HELMHOLTZ ZENTRUM

European XFEL

EXASCALE

UCLA Cermilab

BERKELEY L

Reference
 Implementations

Cea

strong int. partnerships

CASUS

PERIMETER INSTITUTE

SciDAC -5

... Accelerates Innovation

- **LASY____** github.com/**LASY-org**
- timas
 github.com/optimas-org

- BLAST + Geant4
 github.com/LDAmorim/GPos
- easy ML training

A Huebl et al., DOI:10.5281/zenodo.591699 (2015) DP Grote et al., *Particle-In-Cell Modeling Interface (PICMI)* (2021) LD Amorim et al., *GPos* (2021); M Thévenet et al., DOI:10.5281/zenodo.8277220 (2023) A Ferran Pousa et al., DOI:10.5281/zenodo.7989119 (2023) DRD RT Sandberg et al., IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)

Across Scales: Advanced and Conventional Accelerators

BLAST is Now An Accelerated, Machine-Learning Boosted Ecosystem

A Huebl (PI), R Sandberg,

R Lehe, CE Mitchell et al.

DRD

A Huebl et al., NAPAC22, DOI:10.18429/JACoW-NAPAC2022-TUYE2 (2022) RT Sandberg et al and A Huebl, IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023) A Huebl et al., AAC22, arXiv:2303.12873 (2023); RT Sandberg et al. and A Huebl, *in preparation* (2023)

Modeling Time: ML-Acceleration of Plasma Elements for Beamlines

LPA integration via AI/ML for rapid beamline design & operations.

Model Speed: for accelerator elements

Simulation time: full geometry, full physics

hrs	sec	hrs	hrs	min

ML boosted: for a *specific* problem

- start-to-end collider modeling
- digital twin / 'real-time'

ERKELEY

Model Choice: for complex, nonlinear, many-body systems *pick two* of the following speed accuracy simulation level of detail

Fast surrogates: Data-driven modeling is a potential middle ground between

- analytical modeling and
- full-fidelity simulations.

A Huebl et al., NAPAC22, DOI:10.18429/JACoW-NAPAC2022-TUYE2 (2022) RT Sandberg et al and A Huebl, IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)

.DRD A Huebl (PI), R Sandberg, R Lehe, CE Mitchell et al.

A Huebl et al., AAC22, arXiv:2303.12873 (2023); RT Sandberg et al. and A Huebl, in preparation (2023)

We Trained a Neural Net with WarpX for Staging of Electrons

Error of Beam Moments

combined beamline error relative error			stage 1 relative error	stage 2 relative error
$\langle x \rangle$	-2.015e-08	-6.337e-02	5.179e-02	-3.916e-02
σ_x	2.723e-09	8.565e-03	-4.381e-03	4.288e-03
$\langle u_x \rangle$	-3.319e-01	-9.887e-02	-8.609e-02	2.814e-02
σ_{ux}	1.710e-02	5.094e-03	1.047e-02	7.716e-03
ϵ_x	1.844e-08	1.747e-02	7.740e-03	9.912e-03
$\langle y \rangle$	-6.882e-10	-2.155e-03	5.228e-02	1.585e-02
σ_y	9.245e-09	2.895e-02	-8.687e-04	6.412e-03
$\langle u_y \rangle$	-4.540e-01	-1.328e-01	-1.089e-02	-1.243e-01
σ_{uy}	9.856e-02	2.884e-02	3.411e-02	2.491e-03
ϵ_y	5.932e-08	5.509e-02	3.334e-02	5.899e-03
$\langle z \rangle$	-7.686e-09	-7.506e-02	-9.746e-04	-2.561e-02
σ_z	-1.900e-11	-1.855e-04	-3.943e-04	2.927e-03
$\langle u_z \rangle$	1.797e+00	6.148e-05	4.151e-04	-3.769e-05
σ_{uz}	-1.088e+01	-8.394e-02	-8.186e-02	-3.944e-02

Training data: 50,000 particles / beam

<10 layers with few 100s of nodes each are sufficient

A Huebl et al., NAPAC22, DOI:10.18429/JACoW-NAPAC2022-TUYE2 (2022)

RT Sandberg et al and A Huebl, IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)

LDRD A Huebl (PI), R Sandberg, R Lehe, CE Mitchell et al.

ուույ

ERKELEY LA

A Huebl et al., AAC22, arXiv:2303.12873 (2023); RT Sandberg et al. and A Huebl, in preparation (2023)

We Trained a Neural Net with WarpX for Staging of Electrons

one-time cost: few hr WarpX sim + 10min training LWFA LWFA Drift Lens Drift Drift ... Stage Stage 2 ImpactX: after 2 surrogates **ImpactX simulation time:** <1 sec WarpX: 2 stage simulation ct=5.90e-01 λ [μm] [mm] ò -1 -107.3-106.6-107.3-106. ξ [µm] $x [\mu m]$ ξ [µm] 10 ₹ Xd 0 ₹ 0 -10-10 10 2.90 2.95 2.90 2.95 -100 1e4 le4 10 2.95 ă Š 번 2.90 -107.3-106

x [µm]

 $y [\mu m]$

Error of Beam Moments

	combined beamline error relative error			stage 1 relative error	stage 2 relative error
	$\langle x \rangle$	-2.015e-08	-6.337e-02	5.179e-02	-3.916e-02
	σ_x	2.723e-09	8.565e-03	-4.381e-03	4.288e-03
	$\langle u_x \rangle$	-3.319e-01	-9.887e-02	-8.609e-02	2.814e-02
	σ_{ux}	1.710e-02	5.094e-03	1.047e-02	7.716e-03
6	ϵ_x	1.844e-08	1.747e-02	7.740e-03	9.912e-03
	$\langle y \rangle$	-6.882e-10	-2.155e-03	5.228e-02	1.585e-02
	σ_y	9.245e-09	2.895e-02	-8.687e-04	6.412e-03
	$\langle u_y \rangle$	-4.540e-01	-1.328e-01	-1.089e-02	-1.243e-01
	σ_{uy}	9.856e-02	2.884e-02	3.411e-02	2.491e-03
	ϵ_y	5.932e-08	5.509e-02	3.334e-02	5.899e-03
	$\langle z \rangle$	-7.686e-09	-7.506e-02	-9.746e-04	-2.561e-02
	σ_z	-1.900e-11	-1.855e-04	-3.943e-04	2.927e-03
	$\langle u_z \rangle$	1.797e+00	6.148e-05	4.151e-04	-3.769e-05
	σ_{uz}	-1.088e+01	-8.394e-02	-8.186e-02	-3.944e-02

Training data: 50,000 particles / beam

A Huebl et al., NAPAC22, DOI:10.18429/JACoW-NAPAC2022-TUYE2 (2022)

RT Sandberg et al and A Huebl, IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)

A Huebl et al., AAC22, arXiv:2303.12873 (2023); RT Sandberg et al. and A Huebl, in preparation (2023)

E [µm]

Flexible, Hybrid Beamline Sim

- any 6D beam input
- tune lens, transport, ...
- modify ML models

Same super-fast evaluation!

Open challenges

Learning microscopic and collective effects simultaneously.

few pC e- beam

> A Huebl (PI), R Sandberg, R Lehe, CE Mitchell et al.

Summary

- BLAST is a fully open suite of PIC codes for particle accelerator modeling, using code-sharing through libraries and leverage the U.S. DOE Exascale software stack.
 - WarpX was our first Exascale app, for relativistic t-based laser-plasma & beam modeling
 - ImpactX leverages these developments for s-based beam dynamics.
- Seamless, GPU-Accelerated Combination of PIC and AI/ML
 - zero-copy GPU data access: in situ models, application coupling
 - Scripted: easy to vary & research new data models
- Vibrant Ecosystem and Contributions
 - Runs on any platform: Linux, macOS, Windows
 - Public development, automated testing, review & documentation
 - Friendly, open & helpful community

github.com/ECP-WarpX github.com/openPMD github.com/AMReX-Codes github.com/picmi-standard Backup Slides

Computational modeling is essential to the exploration and design of advanced particle accelerators. The modeling of laser-plasma acceleration and interaction can achieve predictive quality for experiments if adequate resolution, full geometry and physical effects are included.

Here, we report on the significant evolution in fully relativistic full-3D modeling of conventional and advanced accelerators in the WarpX and ImpactX codes with the introduction of Exascale supercomputing and AI/ML models. We will cover the first PIC simulations on an Exascale machine, the need for and evolution of open standards, and based on our fully open community codes, the connection of time and space scales from plasma to conventional beamlines with data-driven machine-learning models.

WarpX in ECP: Staging of Laser-Driven Plasma Acceleration

Goal: deliver & scientifically use the nation's first exascale systems

- **ExaFLOP:** a quintillion (10¹⁸) calculations per second
- ensure *all* the necessary pieces are *concurrently* in place

Our DOE science case is in **HEP**, our methods are **ASCR**:

first 3D simulation of a chain of plasma accelerator stages for future colliders

WarpX in ECP: Staging of Laser-Driven Plasma Acceleration

First-of-their-kind platforms: NERSC (Intel, then Nvidia)→Exascale: OLCF (AMD), ALCF (Intel)

J.-L. Vay, A. Huebl et al., ISAV'20 Workshop Keynote (2020) and PoP 28.2, 023105 (2021); L. Fedeli, A. Huebl et al., SC22 (2022) J.-L. Vay et al., ECP WarpX MS FY23.1; A. Ferran Pousa et al., IPAC23, DOI:10.18429/JACoW-IPAC-23-TUPA093 (2023) 27

BLAST is Now An Accelerated, ML-Modeling Ecosystem

Cross-Ecosystem, In Situ Coupling BLAS All-GPU Workflows are blazingly fast Consortium for Python Data PIC simulations API Standards data-apis.org fields & Λ particles ML Models **O** PyTorch CuPv tensors arravs *Can we augment & accelerate on-GPU* Very easy to: Numba connect PIC simulations with on-GPU ML models? vary to other models

A) Training

- Offline: WarpX $\overrightarrow{PMD} \rightarrow$ Neural Network
- Online (in situ): advanced ML methods

B) Inference: in situ to codes

- Zero-copy data access: *persistently on GPU*
- Example: an *ML map* in beam dynamics

A Huebl (PI), R Sandberg, R Lehe, CE Mitchell et al.

Related Works: Not or only partly GPU accelerated

- bottlenecks in host-device I/O, slower
- quality of prediction C Badiali et al., JPlasmaPhys. 88.6 (2022)

A Huebl et al., NAPAC22, DOI:10.18429/JACoW-NAPAC2022-TUYE2 (2022) RT Sandberg et al and A Huebl, IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023) A Huebl et al., AAC22, arXiv:2303.12873 (2023); RT Sandberg et al. and A Huebl, *in preparation* (2023)

Power-Limits Seed a Cambrian Explosion of Compute Architectures

50 Years of Microprocessor Trend Data

Portable Performance through Exascale Programming Model

A. Myers et al., "Porting WarpX to GPU-accelerated platforms," Parallel Computing 108, 102833 (2021)₃₁

BLAST Codes: Transition to Exascale

Imagine a future, *hybrid* particle accelerator, e.g., with conventional and plasma elements.

