

A Lattice Boltzmann approach to plasma simulation in the context of wakefield acceleration

D.Simeoni, A.Cianchi, F.Guglietta, G.Parise, A.R.Rossi, J.Rosenzweig, M.Sbragaglia

EAAC - Sep 18, 2023

Approaches to PWFA Simulation

- [3] Burau et al. IEEE Trans. on Plasma Sc. (2010)
- [4] Benedetti et al. IEEE Trans. on Plasma Sc. (2008)
- [5] Diederichs et al. Computer Phys. Comm. (2022)

Daniele Simeoni

EAAC 2023

[8]

[9]

(2015)

EAAC - Sep 18, 2023 2 / 12

Marocchino et al. Nucl. Inst. & Meth. in Phys (2016)

Tomassini et al. Plasma Phys. and Controlled Fusion

Approaches to PWFA Simulation

Our Goal

To develop a computational tool for enabling **realistic** and **rapid** fluid simulations of PWFA processes amenable to **kinetic extensions**

3 / 12

Further details in Simeoni et al. arXiv, 2309.04872, (2023) & Gianmarco Parise's Poster (poster session Wed 19:00, ID:172)

Key aspects of the method [1,2]: momentum-space discretization

Suitable discretization of the momentum space via adoption of quadrature rules...

How do we select such discrete momenta?

[1] Succi The Lattice Boltzmann Equation: For Complex States of Flowing Matter, Oxford University Press, (2018)

[2] Krüger et al. The Lattice Boltzmann Method, Springer International Publishing, (2017)

Key aspects of the method [1,2]: momentum-space discretization

Choice made to preserve **exactly** the continuous moments of the p.d.f when moving to a discrete momentum space

$$\int_{\text{CONTINUUM MOMENTUM SPACE}} \int \left[\left(\dots \right) f(\mathbf{x}, \mathbf{p}, t) \right] d\mathbf{p} = \sum_{i=0}^{N-1} \left[\left(\dots \right) f_i(\mathbf{x}, t) \right]$$
DISCRETE MOMENTUM SPACE

How many discrete momenta N to take? It depends on the number of moments one wants to recover! $N \sim O(10)$ for fluid modeling

Succi The Lattice Boltzmann Equation: For Complex States of Flowing Matter, Oxford University Press, (2018)
 Krüger et al. The Lattice Boltzmann Method, Springer International Publishing, (2017)

Key aspects of the method [1,2]: space - time discretization

Obtain the LB Equation

$$f_i\left(\mathbf{x} + \Delta\mathbf{x}, t + \Delta t
ight) = f_i(\mathbf{x}, t) + \Delta t \Sigma_i(\mathbf{x}, t)$$

- 1. Time discretization Δt
- 2. Regular lattice of characteristic length $\Delta \mathbf{x} = \left(\frac{\mathbf{p}_i}{m}\right) \Delta t$
- 3. Source term $\Sigma_i(\mathbf{x}, t)$ (Electromagnetic, ...)

Evolve through source & stream paradigm

How to adapt this framework for fluid modeling?

[1] Succi The Lattice Boltzmann Equation: For Complex States of Flowing Matter, Oxford University Press, (2018)

[2] Krüger et al. The Lattice Boltzmann Method, Springer International Publishing, (2017)

Development of a fluid model from kinetic theory [1]

Start from the relativistic kinetic equation

- $\boldsymbol{\rho}^{\alpha}\frac{\partial f}{\partial x^{\alpha}}(\mathbf{x},t) = \boldsymbol{\Sigma}(\mathbf{x},t)$
- Space time Advection of f
- Source term: electromagnetic interaction (F^{αβ})
- From here, build the **hydro variables** as the first moments of f...

Particle flow $N^{\alpha} = \int f \rho^{\alpha} \frac{dp}{\rho_0}$ Energy-momentum tensor $T^{\alpha\beta} = \int f \rho^{\alpha} \rho^{\beta} \frac{dp}{\rho_0}$ Energy-momentum flux $K^{\alpha\beta\gamma} = \int f \rho^{\alpha} \rho^{\beta} \rho^{\gamma} \frac{dp}{\rho_0}$

- ... and express their respective equations of transfer:
 - Mass conservation $\partial_{\alpha} N^{\alpha} = 0$ Energy-momentum conservation $\partial_{\alpha} T^{\alpha\beta} = \frac{q}{c} F^{\beta\alpha} N_{\alpha}$ Energy-momentum flux conservation $\partial_{\alpha} K^{\alpha\beta\gamma} = \frac{q}{c} (F^{\beta\alpha} T_{\alpha}^{\ \gamma} + F^{\gamma\alpha} T_{\alpha}^{\ \beta})$
- [1] Schroeder et al. Phys. Rev. E, 72:055401, (2005) Phys. Rev. E, 81:056403, (2010)

Development of a fluid model from kinetic theory [1]

Set of equations not yet closed. Fluid closure needed! Quantity of interest:

$$\theta^{\mu\nu} = \int (p^{\mu} - u^{\mu})(p^{\nu} - u^{\nu})f \frac{d\mathbf{p}}{p_0} \xrightarrow{\text{SECOND ORDER}\\ \underset{\text{MOMENT}}{\text{CENTRALIZED}}$$
COLD CLOSURE WARM CLOSURE [1,2]
No thermal spread

$$\theta^{\mu\nu} = 0$$
WARM CLOSURE [1,2]
LOCAL EQ. CLOSURE [3]
Isotropic thermal spread

$$\theta^{zz} \neq \theta^{rr}$$
Isotropic thermal spread

$$\theta^{zz} = \theta^{rr}$$

Many relevant features within context of non-cold closure theories...

- ▶ Wave breaking (regularization of singularity of the cold fluids) [1,2,4]
- Impact on late stage dynamics: acoustic waves & motion of ions [5]
- Cumulative heating from the acceleration of long bunch trains [5]
- Broadening of electron filaments in positron acceleration experiments [6]

[1]	Schroeder et al. Phys. Rev. E, (2005) - (2010)	[4]	Rosenzweig Phys. Rev. A Gen. Phys. (1998)
[2]	Katsouleas et al. Phys. Rev. Lett. (1988)	[5]	D'Arcy et al. Nature (2023)
[3]	Toepfer et al. Phys. Rev. A (1971)	[6]	Diederichs et al. Phys. of Plasmas (2023)
	Daniele Simeoni	EAAC 2023	EAAC - Sep 18, 2023

8 / 12

Enslaving LB to fluid modeling...

COLD CLOSURE	WARM CLOSURE	LOCAL EQ. CLOSURE			
No thermal spread	Anisotropic thermal spread	Isotropic thermal spread			
$ heta^{\mu u}=0$	$\theta^{zz} \neq \theta^{rr}$	$\theta^{zz} = \theta^{rr}$			

LB can be adapted for all these closure schemes.

Once proper closure is chosen, fluid eqs. can be recast as Forced Advection eqs...

$$\partial_t A + \nabla \cdot (\mathbf{u} A) = F_A$$

•
$$A = (N^{\alpha}, T^{\alpha\beta})$$
 p.d.f moments

- ► *F_A* electromagnetic forcing
- u fluid transport velocity

LB recovers solution to this eq. by discrete coarse graining [1,2]

$$A = \sum_{i=0}^{N-1} f_i(\mathbf{x}, t)$$

[1] Succi The Lattice Boltzmann Equation: For Complex States of Flowing Matter, Oxford University Press, (2018)

[2] Krüger et al. The Lattice Boltzmann Method, Springer International Publishing, (2017)

One example result

DRIVER DIRECTION

Quantitative assessment of **fluid closures** in PWFA via **spatially resolved warm** plasma simulations

- 1. Gaussian particle driver
- 2. Immobile ions
- 3. 3D axially symmetric-comoving domain

Further details in Simeoni et al. arXiv, 2309.04872, (2023) & Gianmarco Parise's Poster (poster session Wed 19:00, ID:172)

Daniele Simeoni

10 / 12

Recovering full Vlasov with LB

Being rooted in kinetic theory, LB can **progressively** be extended to reproduce more and more **kinetic effects**

Already done in contexts other than PWFA (Quark Gluon Plasma [1,2])

Future Perspective 2

Model improvement via progressive inclusion of kinetic effects. Comparisons with PIC for quantitative assessments.

- [1] Ambrus et al. Phys. Rev. C, 98:03520, (2018)
- [2] Simeoni et al. Nature Comp. Science, 2:641, (2022)

Recovering full Vlasov with LB

Being rooted in kinetic theory, LB can **progressively** be extended to reproduce more and more **kinetic effects**

Already done in contexts other than PWFA (Quark Gluon Plasma [1,2])

Future Perspective 2

Model improvement via progressive inclusion of kinetic effects. Comparisons with PIC for quantitative assessments.

- [1] Ambrus et al. Phys. Rev. C, 98:03520, (2018)
- [2] Simeoni et al. Nature Comp. Science, 2:641, (2022)

Outlook & Conclusions

First step forward in the development of a a computational tool for enabling **realistic** and **rapid** fluid simulations of PWFA amenable to **kinetic extensions**

- Fluid treatment based on LB
- Capability to include thermal effects (different closures)

What's next?

- 1. Inclusion of ion dynamics
- 2. Extend methodology to full kinetic eqs.
- 3. Comparison with PICs for quantitative assessments

12 / 12

Backup Slides

Some words on performances...

Sim. parameters and running time

- ζ lattice points = $3 \cdot 10^3$ ($\Delta \zeta = 0.53 \ \mu m$)
- r lattice points = $6 \cdot 10^2 (\Delta r = 0.53 \ \mu m)$
- total time steps = $3 \cdot 10^4$ ($\Delta t = 0.17$ fs)
- CPUs = 96 (Intel Xeon E5-2695@2.4 GHz)
- \sim 3 hours (Local Equilibrium LB) \sim 6 hours (Warm Closure LB)

Parallelization on multi CPUs using MPI paradigm

Some words on performances...

Sim. parameters and running time

- ζ lattice points = $3 \cdot 10^3$ (Δζ = 0.53 μm)
- r lattice points = $6 \cdot 10^2 (\Delta r = 0.53 \ \mu m)$
- total time steps = $3 \cdot 10^4$ ($\Delta t = 0.17$ fs)
- CPUs = 96 (Intel Xeon E5-2695@2.4 GHz)
- \sim 3 hours (Local Equilibrium LB) \sim 6 hours (Warm Closure LB)

What about multi GPUs?

Our code is not running (yet!) on GPUs, but there are already LB-GPUs implementations in our research group [1]

Performance for a H-component system 512 ² with same color gradient model measured in CUIPS turning an multiple NNUA Angere ANG CMH (sech card equipped with 80 CB of RAM) and a cluster of nodes made of 2x 20-core 2.4 GHz Intel Xeon Cold 6148 (Shykale) persons. Note the first line is reporting the number of A100 GPU cards and the number of CPU cores for LBcoda and LBSoft, respectively.								
	5123 Grid	1	8	16	32	64 🛏	CPUs/GPUs	
LB on GPUs- LB on CPUs-	→ LBcuda → LBSoft	1.04 1.8 · 10 ⁻³	7.63 13 · 10 ⁻³	14.13 24 · 10 ³	23.13 44 · 10 ⁻³	36.05 86 · 10 ⁻³		

[1] Bonaccorso et al. Computer Physics Communications, 277:108380, (2022)