Coherence of confined matter in lattice gauge theories at the mesoscopic scale

Enrico C. Domanti, Paolo Castorina, Dario Zappalà, Luigi Amico

QuantHEP Conference, Bari, September 2023

Outline

Motivation

• Introduction to one dimensional \mathbb{Z}_2 lattice gauge theory

➢ Results

- Implementation on a ring pierced by a synthetic magnetic flux
- Ground state current
- Single meson dynamics in the ring

➤Conclusions

Motivation

High energy physics

- Gauge theories are at the basis of our understanding of fundamental interactions
- Lattice gauge theories as tools for studying high-energy phenomena:
 - Confinement, string breaking, etc.

Low energy physics

- High Tc superconductors
- Spin liquids
- Topology

Quantum simulation of LGTs

ARTICLES https://doi.org/10.1038/s41567-019-0649-7

physics

Floquet approach to \mathbb{Z}_2 lattice gauge theories with ultracold atoms in optical lattices

Christian Schweizer^{1,2,3}, Fabian Grusdt^{3,4}, Moritz Berngruber^{1,3}, Luca Barbiero⁵, Eugene Demler⁶, Nathan Goldman⁵, Immanuel Bloch^{1,2,3} and Monika Aidelsburger^{3,2,3*}

B REPORT | QUANTUM SIMULATION

f 🕑 in 🍜 🗞 🖄

Thermalization dynamics of a gauge theory on a quantum simulator

ZHAO-YU ZHOU 💿 , GUO-XIAN SU 💿 , JAD C. HALIMEH 💿 , ROBERT OTT 💿 , HUI SUN, PHILIPP HAUKE 💿 , BING YANG 💿 , ZHEN-SHENG YUAN 💿 , JÜRGEN BERGES. AND JIAN-WEI PAN 💿 Authors Info & Affiliations

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Pres

Confined Phases of One-Dimensional Spinless Fermions Coupled to \mathbb{Z}_2 Gauge Theory

Umberto Borla, Ruben Verresen, Fabian Grusdt, and Sergej Moroz Phys. Rev. Lett. **124**, 120503 – Published 26 March 2020

PHYSICAL REVIEW X

Highlights Recent Subjects Accepted Collections Authors Referees Search

Open Access

Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators

Federica M. Surace, Paolo P. Mazza, Giuliano Giudici, Alessio Lerose, Andrea Gambassi, and Marcello Dalmonte Phys. Rev. X **10**, 021041 – Published 21 May 2020

Nhung H. Nguyen, Minh C. Tran, Yingyue Zhu, Alaina M. Green, C. Huerta Alderete, Zohreh Davoudi, and Norbert M. Linke PRX Quantum **3**, 020324 – Published 4 May 2022

Quantum Coherence in LGTs at the mesoscopic scale

Goal: address properties of LGTs which emerge in quantum coherent systems at the mesoscopic scale.

Quantum technology to explore properties of coherent mesoscopic systems:

- Superconducting circuits
- Cold atoms: neutral atoms, long coherence times

'Roadmap on Atomtronics: State of the art and perspective', Amico, Birkl, Boshier et al., AVS Quantum Science (2021).

Quantum Coherence in LGTs at the mesoscopic scale

Goal: address properties of LGTs which emerge in quantum coherent systems at the mesoscopic scale.

Quantum technology to explore properties of coherent mesoscopic systems:

- Superconducting circuits
- Cold atoms: neutral atoms, long coherence times

'Roadmap on Atomtronics: State of the art and perspective', Amico, Birkl, Boshier et al., AVS Quantum Science (2021).

Probe of quantum coherence: Persistent Current

$$\mathcal{I}(\Phi) = -\frac{\partial \mathcal{F}(\Phi)}{\partial \Phi}$$

'Probing the BCS-BEC crossover with persistent currents', Pecci, Naldesi *et al.*, PRR (2021). 'Probe for bound states of SU(3) fermions and colour deconfinement', Chetcuti, Polo *et al.*, Communication Physics (2023).

JQI/NIST

Quantum Coherence in LGTs at the mesoscopic scale

Goal: address properties of LGTs which emerge in quantum coherent systems at the mesoscopic scale.

Quantum technology to explore properties of coherent mesoscopic systems:

- Superconducting circuits
- Cold atoms: neutral atoms, long coherence times

'Roadmap on Atomtronics: State of the art and perspective', Amico, Birkl, Boshier et al., AVS Quantum Science (2021).

Probe of quantum coherence: Persistent Current

$$\mathcal{I}(\Phi) = -\frac{\partial \mathcal{F}(\Phi)}{\partial \Phi}$$

'Probing the BCS-BEC crossover with persistent currents', Pecci, Naldesi *et al.*, PRR (2021). 'Probe for bound states of SU(3) fermions and colour deconfinement', Chetcuti, Polo *et al.*, Communication Physics (2023).

More recently:

Rydberg atoms: coherent transport of excitations

JQI/NIST

'Controlled flow of excitations in a ring-shaped network of Rydberg atoms ', Perciavalle, Rossini *et al.*, PRA (2023).

D. Barredo, et al. 2015 *PRL* 114, 113002
S. Ravets, et al. 2015 *PRA* 92, 020701(R)
A. Browaeys & T. Lahaye 2020 *Nature Physics* 16, 132-142

D. Barredo, et al. 2015 *PRL* 114, 113002
S. Ravets, et al. 2015 *PRA* 92, 020701(R)
A. Browaeys & T. Lahaye 2020 *Nature Physics* 16, 132-142

D. Barredo, et al. 2015 *PRL* 114, 113002
S. Ravets, et al. 2015 *PRA* 92, 020701(R)
A. Browaeys & T. Lahaye 2020 *Nature Physics* 16, 132-142

> Motivation

- Introduction to one dimensional \mathbb{Z}_2 lattice gauge theory

➢ Results

- Implementation on a ring pierced by a synthetic magnetic flux
- Ground state current
- Single meson dynamics in the ring

Lattice Gauge Theories

(Hamiltonian approach)

$S(\psi, A) = \int d^d x \, \mathcal{L}(\psi(x), A(x))$

QED

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}(\partial_{\mu} - ieA^{\mu}) - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

The action is invariant under local gauge transformations.

$$A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu} \Lambda(x)$$

 $\psi(x) \to e^{ie \Lambda(x)} \psi(x)$

Lattice Gauge Theories

(Hamiltonian approach)

$$S(\psi, A) = \int d^d x \, \mathcal{L}(\psi(x), A(x))$$

QED

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}(\partial_{\mu} - ieA^{\mu}) - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

The action is invariant under local gauge transformations.

$$A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu} \Lambda(x)$$

 $\psi(x) \to e^{ie \Lambda(x)} \psi(x)$

 $\mathcal{H}(\psi_{i,j}, A_{\overline{i},\overline{j}})$

The Hamiltonian commutes with the generators of local gauge transformations, at each site of the lattice:

$$[\mathcal{H}, G_{i,j}] = 0$$

$$S(\psi, A) = \int d^d x \, \mathcal{L}(\psi(x), A(x))$$

QED

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}(\partial_{\mu} - ieA^{\mu}) - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

The action is invariant under local gauge transformations.

$$A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu} \Lambda(x)$$

 $\psi(x) \to e^{ie \Lambda(x)} \psi(x)$

The Hamiltonian commutes with the generators of local gauge transformations, at each site of the lattice:

()

$$\begin{bmatrix} \mathcal{H}, G_{i,j} \end{bmatrix} = \begin{pmatrix} \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \\ & & \begin{pmatrix} & & \\ & & \end{pmatrix} \\ & & & \ddots \\ & & & \ddots \\ & & & & \begin{pmatrix} & & \\ & & & \ddots \\ & & & & \end{pmatrix} \end{bmatrix}$$

5

$$S(\psi, A) = \int d^d x \, \mathcal{L}(\psi(x), A(x))$$

QED

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}(\partial_{\mu} - ieA^{\mu}) - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

The action is invariant under local gauge transformations.

$$A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu} \Lambda(x)$$

 $\psi(x) \to e^{ie \Lambda(x)} \psi(x)$

The Hamiltonian commutes with the generators of local gauge transformations, at each site of the lattice:

$$\mathcal{H} = \sum_{j} \left[w(c_{j}^{\dagger} \sigma_{j+\frac{1}{2}}^{x} c_{j+1} + h.c.) + \frac{\tau}{2} \sigma_{j+\frac{1}{2}}^{z} \right]$$

$$\mathcal{H} = \sum_{j} \left[w(c_{j}^{\dagger} \, \sigma_{j+\frac{1}{2}}^{x} \, c_{j+1} + h.c.) + \frac{\tau}{2} \sigma_{j+\frac{1}{2}}^{z} \right]$$

Gauge Constraints: Gauss Law

$$G_j = \sigma_{j-1/2}^z \, (-1)^{n_j} \, \sigma_{j+1/2}^z = 1 \, \forall j$$

$$\mathcal{H} = \sum_{j} \left[w(c_{j}^{\dagger} \sigma_{j+\frac{1}{2}}^{x} c_{j+1} + h.c.) + \frac{\tau}{2} \sigma_{j+\frac{1}{2}}^{z} \right]$$

Gauge invariant hopping

$$\mathcal{H} = \sum_{j} \left[\underbrace{w(c_{j}^{\dagger} \sigma_{j+\frac{1}{2}}^{x} c_{j+1} + h.c.)}_{\text{Gauge invariant hopping}} + \frac{\tau}{2} \sigma_{j+\frac{1}{2}}^{z} \right]$$

$$\mathcal{H} = \sum_{j} \left[w(c_{j}^{\dagger} \sigma_{j+\frac{1}{2}}^{x} c_{j+1} + h.c.) + \frac{\tau}{2} \sigma_{j+\frac{1}{2}}^{z} \right]$$
String tension / electric field term

 $R \equiv \text{length of a string of spin} \uparrow$

$$V(R) = \tau R$$

CONFINING POTENTIAL

Motivation

• Introduction to one dimensional \mathbb{Z}_2 lattice gauge theory

➢ Results

- Implementation on a ring pierced by a synthetic magnetic flux
- Ground state current
- Single meson dynamics in the ring

In a **fixed gauge sector**, a \mathbb{Z}_2 Lattice Gauge Theory dynamics can be mapped in an Ising model in transverse & longitudinal fields

In a **fixed gauge sector**, a \mathbb{Z}_2 Lattice Gauge Theory dynamics can be mapped in an Ising model in transverse & longitudinal fields

In a **fixed gauge sector**, a \mathbb{Z}_2 Lattice Gauge Theory dynamics can be mapped in an Ising model in transverse & longitudinal fields

In a **fixed gauge sector**, a \mathbb{Z}_2 Lattice Gauge Theory dynamics can be mapped in an Ising model in transverse & longitudinal fields

$$\mathcal{H} = \sum_{j} \left[-(m/2) \, s_j^z s_{j+1}^z + w \, s_j^x + (\tau/2) \, s_j^z \right]$$

In a **fixed gauge sector**, a \mathbb{Z}_2 Lattice Gauge Theory dynamics can be mapped in an Ising model in transverse & longitudinal fields

$$\mathcal{H} = \sum_{j} \left[-(m/2) \, s_j^z s_{j+1}^z + w \, s_j^x + (\tau/2) \, s_j^z \right]$$

Floquet engineering → Synthetic magnetic flux

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{drive}(t)$$
$$\mathcal{H}_0 = \sum_j \left[(\tau/2) \, s_j^z + w \, s_j^x + (-1)^j \, V \, s_j^z s_{j+1}^z \right]$$
$$\mathcal{H}_{drive}(t) = \sum_j (A/2) \cos(\Omega \, t + (-1)^j \varphi) \, s_j^z$$

In a **fixed gauge sector**, a \mathbb{Z}_2 Lattice Gauge Theory dynamics can be mapped in an Ising model in transverse & longitudinal fields

Motivation

• Introduction to one dimensional \mathbb{Z}_2 lattice gauge theory

➢ Results

- Implementation on a ring pierced by a synthetic magnetic flux
- Ground state current
- Single meson dynamics in the ring

8

8

>Motivation and introduction

• Introduction to one dimensional \mathbb{Z}_2 lattice gauge theory

➢ Results

- Implementation on a ring pierced by a synthetic magnetic flux
- Ground state current
- Single meson dynamics in the ring

Exact solution of the two-particle problem on the ring with flux

Exact solution of the two-particle problem on the ring with flux

$$2w\cos\left(\frac{K}{2} + \frac{2\pi\Phi}{L\Phi_0}\right) \left[\chi(R+1) + \chi(R-1)\right] + \tau R \chi(R) = E \chi(R)$$
Wannier-Stark equation

G. H. Wannier – Rev. Mod. Phys. (1962)

Exact solution of the two-particle problem on the ring with flux

 $\Psi_E(s,R) = \mathcal{N} e^{i K s} \chi_E(\overline{K},R)$

Center of mass momentum $K = \frac{2\pi}{r} n$

$$2w\cos\left(\frac{K}{2} + \frac{2\pi\Phi}{L\Phi_0}\right) \left[\chi(R+1) + \chi(R-1)\right] + \tau R\,\chi(R) = E\,\chi(R)$$

Wannier-Stark equation

G. H. Wannier – Rev. Mod. Phys. (1962)

Quench dynamics

$$\Phi = 0 \rightarrow \Phi \neq 0$$

$$\psi_0(s, R) = e^{-(s-s_0)^2/(2\Sigma^2)} \Psi_{E_0}(s, R)$$

$$\sum \rightarrow \text{gaussian width}$$

lowest energy eigenstate

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - arXiv:2304.12713

9

	CENTER OF MASS DYNAMICS $P(s,t)$	STRING DYNAMICS $P(R,t)$	CURRENT DYNAMICS $\langle \psi(t) \mathcal{I} \psi(t) angle$
$\Sigma = 2$			
$\Sigma ightarrow 0$			

Directional motion

- Directional motion
- Suppressed string oscillations

- Directional motion
- Suppressed string oscillations
- \mathcal{I} oscillates around a finite value \mathcal{I}_0

- Directional motion
- Suppressed string oscillations
- \mathcal{I} oscillates around a finite value \mathcal{I}_0

• Non-directional motion

- Directional motion
- Suppressed string oscillations
- \mathcal{I} oscillates around a finite value \mathcal{I}_0

- Non-directional motion
- Broad string oscillations

- Directional motion
- Suppressed string oscillations
- \mathcal{I} oscillates around a finite value \mathcal{I}_0

- Non-directional motion
- Broad string oscillations
- \mathcal{I} is zero on average

Aharonov-Bohm effect

- $S_0 + L/2$ Φ S_0 S_0 R_0
- Effectively single particle Aharonov Bohm effect
- Slow dynamics
- Narrow frequency distribution

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - arXiv:2304.12713

Aharonov-Bohm effect

- Effectively single particle Aharonov –
- Effectively single particle Aharonov Bohm effect
- Slow dynamics

 $S_0 + L/2$

• Narrow frequency distribution

 Aharonov – Bohm oscillations combine with the string dynamics

Aharonov-Bohm effect

- $S_0 + L/2$ Φ S_0 R
- Effectively single particle Aharonov Bohm effect
- Slow dynamics
- Narrow frequency distribution

- Aharonov Bohm oscillations combine with the string dynamics
- Broad frequency distribution

Summary

- > We proposed an implementation of a synthetic magnetic flux in a Z2 LGT via
 - Floquet engineering
- > We studied coherence properties of the theory
 - Fractionalization of the ground state current
 - > Flux driven dynamics of a single meson
 - Aharonov-Bohm effect
- Future directions
 - Extension to other LGTs
 - Scattering with localized potential barriers in the ring

Summary

- > We proposed an implementation of a synthetic magnetic flux in a Z2 LGT via
 - Floquet engineering
- > We studied coherence properties of the theory
 - Fractionalization of the ground state current
 - > Flux driven dynamics of a single meson
 - Aharonov-Bohm effect
- Future directions
 - Extension to other LGTs
 - Scattering with localized potential barriers in the ring

Thank you for your attention!