

Tensor network simulations of quantum circuits with finite fidelity

Andrea De Girolamo Technical University of Munich Bari - September 26th, 2023

In collaboration with:

Peter Rabl (TUM, WMI) Giuseppe Magnifico (UniBa) Saverio Pascazio (UniBa)

Quantum advantage

"...classical systems cannot simulate highly entangled quantum systems efficiently, and we hope to hasten the day when well controlled quantum systems can perform tasks surpassing what can be done in the classical world." John Preskill

Google's original division of classically tractable vs. supremacy regimes

Quantum advantage and tensor networks nature

	Explore content 🗸 About the journal	l ∽ Publish with us ∽
	nature > articles > article	
	Article Published: 23 October 2019	
	Quantum supremacy	using a programmable
antum	PAPERS PERSPECT	essor
pen journal for quantum science		ave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas,
Hyper-optimized tensor network contraction ohnnie Gray ^{1,2} and Stefanos Kourtis ^{1,3,4}		avid A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro,
		Dunsworth Edward Farhi Brooks Foxen Austin Fowler Crain
		arXiV > quant-ph > arXiv:2005.06787
Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA Department of Physics, Boston University, Boston, MA, 02215, USA		Quantum Physics
		(Submitted on 14 May 2020)
quantique & Departement de physique, o	inversite de siterbrooke, Quebec Jik zkr, canada	
2021-03-15, volume 5, pa	je 410	Yaoyun Shi, Jianxin Chen
https://doi.org/10.22331/	g-2021-03-15-410	
Quantum 5, 410 (2021)		

A performance of 1.2 Eflops (single-preicision), or 4.4 Eflops (mixed-precision) for simulating a $10 \times 10 \times (1+40+1)$ circuit (a new milestone for classical simulation of RQC), using about 42 million Sunway cores. The time to sample Goolge Sycamore in a simulation way is reduced from years to 304 seconds.

QuanTeN.jl

Hyper-optimized contractions + simulations with finite fidelity

le 📀 Issues 🐧 Pull requests 🕞 Actio	ons 🗄 Projects 🕕 Security 🗠 Insight	ts 🕸 Settings		C	
QuanTeN.jl Private			⊙ Unwatch 1 ▾	Starred 2	
🖓 main 🗸 🕻 1 branch 🛇 0 tags		Go to file Add file -	<> Code -	¢ t	
andreadegirolamo99 Update README.md		ebe2009 5 days ago	S 9 com	A J package for optimised quantum uit unulations with tensor networks	
benchmark	Modified benchmarking		do	Sadme	
requirements	Modified requirements.sh permission	VI	2 weeks ago	진 MIT license	
src src	Modified benchmarking		5 days ago	☆ 2 stars	
test	Created package + in ved mory in ist	tics	5 days ago	③ 1 watching	
🗋 .gitignore	Created package + implying d me ry heurist	tics	5 days ago	양 0 forks	
	Charled ckage + improve hemory heurist	tics	5 days ago		
Project.toml	Project.toml Create vach improved memory heuris		5 days ago	Releases	
C README.ma	Update KEADME.md		5 days ago	No releases published Create a new release	
P ou	Proto-plots + corrected Schrödinger memory	/	last week		
	Created package + improved memory heurist	tics	5 days ago	Packages	
i≣ REA ne.md			Ø	No packages published Publish your first package	

ТΠ

Table of Contents

- 1. Introduction
 - 1. Quantum advantage
 - 2. QuanTeN.jl
- 2. Exact contractions
 - 1. Tensor notation
 - 2. Contractions
 - 3. Random quantum circuit
 - 4. Schrödinger method
 - 5. Heuristics opt_einsum and cotengra
 - 6. Schrödinger-Feynman method
 - 7. Results
- 3. Simulations with finite fidelity
 - 1. SVD and MPS
 - 2. Time-Evolving Block Decimation (TEBD)
 - 3. Cluster-TEBD
- 4. Summary

De Girolamo (TUM) | Tensor network simulations of quantum circuits with finite fidelity

2. Exact contractions

Tensor notation

Contractions

Tensor network approach for quantum circuits

Initial state: MPS

Evolution: *n*-qubit gate \rightarrow rank-2*n* tensor

De Girolamo (TUM) | Tensor network simulations of quantum circuits with finite fidelity

Heuristics – opt_einsum and cotengra

opt_einsum: random-greedy approach to minimize size of contractions *cotengra*: collection of many heuristics to optimize the contraction tree

Schrödinger-Feynman method BA iDEFkmCВ CABSlicing: $i = 1, \dots, \dim(i)$ $1\overline{\overline{F}}$ ED k E mF \overline{C} BCAA $D \mid k$ \overline{m} $D \mid EF$ |E| $(ABC)_i$ BCArepeat for all iR $\overline{(DEF)}_i$ D - kEF

Results – Benchmarking exact contractions

Heuristics	Contractors		
opt_einsum	custom		
cotengra	custom		
opt_einsum	ITensors.jl		
opt_einsum	opt_einsum		
Left to right	ITensors.jl		

Results – Benchmarking exact contractions

Low number of layers:

Results – Benchmarking exact contractions

High number of layers:

3. Simulations with finite fidelity

SVD and MPS

Singular Value Decomposition (SVD):

Successive SVDs and truncation of singular values produce a matrix-product state (MPS) approximation of a tensor:

$$T^{s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}} = \sum_{\{\alpha\}} A^{s_{1}}_{\alpha_{1}}A^{s_{2}}_{\alpha_{1}\alpha_{2}}A^{s_{3}}_{\alpha_{2}\alpha_{3}}A^{s_{4}}_{\alpha_{3}\alpha_{4}}A^{s_{5}}_{\alpha_{4}\alpha_{5}}A^{s_{6}}_{\alpha_{5}}$$

$$\prod_{T} = A^{s_{1}}_{A}A^{s_{2}}_{A}A^{s_{3}}_{A}A^{s_{4}}_{A}A^{s_{5}}_{A}A^{s_{6}}_{A}$$

Bond dimension grows exponentially with the number of entangling gates applied

Time-Evolving Block Decimation (TEBD)

Remember random quantum circuit:

For each layer, apply gates and, for entangling gates, perform truncated SVD [6]

Cluster-TEBD

Remember random quantum circuit:

Instead, contract multiple layers until exact state fits in memory

De Girolamo (TUM) | Tensor network simulations of quantum circuits with finite fidelity

Summary

Heuristics for optimized exact contractions of deep quantum circuits

SVD and MPS to store many-qubit quantum circuits

Push boundaries to find actual quantum advantage threshold

De Girolamo (TUM) | Tensor network simulations of quantum circuits with finite fidelity

References

[1] John Preskill, "Quantum computing and the entanglement frontier". arXiv:1203.5813 (2012)

[2] Frank Arute *et al.*, "Quantum supremacy using a programmable superconducting processor". *Nature* **574**, 505–510 (2019)

[3] Daniel G. A. Smith and Johnnie Gray, "opt_einsum - A Python package for optimizing contraction order for einsum-like expressions". *Journal of Open Source Software*, 3(26), 753 (2018)

[4] Johnnie Gray and Stefanos Kourtis, "Hyper-optimized tensor network contraction". Quantum 5, 410 (2021)

[5] Cupjin Huang *et al.*, "Classical Simulation of Quantum Supremacy Circuits". arXiv:2005.06787 (2020)

[6] Yiqing Zhou, E. Miles Stoudenmire and Xavier Waintal, "What limits the simulation of quantum computers?" Phys. Rev. X **10**, 041038 (2020)