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LGT are almost everywhere in theoretical physics! 

As emergent theories in condensed 
matter: high-Tc superconductors, 
frustrated systems, spin liquids.

As fundamental description in 
particle physics: Standard Model
 

• They are extremely demanding from a numerical point of view.

• Powerful numerical methods, such as Monte Carlo, fail in several regimes 
of finite-density or for non-equilibrium phenomena (sign-problem). 

• Ideal goal for quantum-inspired efficient algorithms and quantum 
simulation/computation!



Eur. Phys. J. D 74, 165 (2020)

Nature 534, 516–519 (2016). 

First implementation of U(1) LGT on 
digital quantum computer

Efficient quantum-inspired algorithms:
Tensor Networks (no sign-problem)

Quantum 4, 281 (2020)

Quantum Technologies for LGT



Non-Abelian

Abelian

Classical
Simulation

Quantum
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New J. Phys. 16 103015 (2014)
Quantum 1, 9 (2017)
Phys. Rev. D 100, 074512 (2019)
Phys. Rev. X 10, 041040 (2020)
Nature communications 12.1, 3600 (2021)
Philosophical Transactions of the Royal Society

A 380.2216 (2022)
ArXiv:2307.09396 (2023)
ArXiv:2308.04488 (2023)

(Tensor Networks)
(Trapped ion qudits)
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Framework choices

Quantum Simulators

 Find ground states
 Track real-time evolution
...on equal footing2

 Optical lattices
 Rydberg atoms
 Trapped ions3

Tensor Network 
Methods

[2] Phys. Rev. B 94, 165116 (2016)

[3] Nature Physics 18, 1053 (2022)

Leptons and 
quarks are 
fermions

Tensor Networks and Quantum 
Simulators could take care of 
fermionic statistics4,5

...or we simply eliminate the 
fermionic statistics!!!

[4] Phys. Rev. B 80, 165129 (2009)
[5]  arXiv:2303.08683 (2023)



bond index with 
dimension 

Physical indices with dimension . 
Bond indices with dimension . 
The number of parameters is 

 representation, 
exponentially large in the 
system size. Inefficient.

d-level
systems

multiple
SVD



Examples

Matrix Product States (MPS)

Tree Tensor Networks (TTN)

- strong connectivity
- distance between two lattice sites 

scales logarithmically within the 
network

minimize



Projected Entangled Pair States (PEPS)

Tree Tensor Networks (TTN)

- they automatically 
reproduce the area-law 
of entanglement

- the optimization has a 
complexity 

- they do not automatically 
reproduce the area-law 
of entanglement

- the optimization has a 
complexity 
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Tricky. Let’s delve deeper
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Matter field: Staggered (Dirac) fermions

Lattice Dirac 
Hamiltonian
(2-spinor field)

But what is a 
fermion, really?

Mutual 
anticommutation

Local algebra rules 
determine the
“fermion type”

“Whatever”
Fermion
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Build Fermions from local operators (matrices)

With this definition two fermatrices 
will mutually anticommute
(also mismatched types) 

Notable examples:

ALWAYS
(ordering is 
irrelevant)

Dirac Fermion

Majo. Fermion

In both cases

Practical formalism to define exotic fermions



Where were we? Oh right...

Gauge Field Operators act on gauge fields, sitting 
on the lattice bonds



Their algebra 
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0

Quantum Link Model

Energy 
cutoff in

Finite
spin-shell

Replace e.g.

Other strategies are known: e.g.
[1] Phys. Rev. D 106, 114511 (2002)
[2] arXiv:2304.02527 (2023)

Unitarity is sacrificed, 
the rest is fine
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Back again

Gauss’ Law (gauge symmetry) on vertices
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Fermionic Rishons

Exotic fermion
operators

I split the gauge 
field into two 
“copies”

L R
Extra selection rule needed

I can decompose:

Exotic rishon operator as a fermatrix

s = 3/2

belongs 
here

belongs 
here
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we Eliminated fermionic matter
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Why all the fuss?

Now everything mutually commutes
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A simple square lattice (of dressed sites)

● Like a spin lattice (with large spins)

● Nearest Neighbor interaction

● Plaquette-type interaction

● Gauss’ Law is on-site: LOCAL 
BASIS FILTER

● The Link symmetry is a nearest-
neighbor selection rule (like a 
stabilizer)

READY
For simulation

Tensor Networks

Quantum Simulator



(2+1)D: Ground-state properties as a function of  and  
without magnetic terms 

Vacuum phase: no particles, 
no field excitations

Charge-Crystal Phase: 
particle-antiparticle dimers



(2+1)D: Finite Charge Density Sector 

Charge imbalance 
into the system: 
very challenging 
for Montecarlo 

techniques 
(sign problem)

 

deep in the vacuum phasenear the critical lineCharges forced to reach the 
boundaries to minimise the 

electric energy

Phys. Rev. X 10, 041040 (2020) 



Tree Tensor Networks in 3D 

Sign-problem-free 
approach! 

The optimization still 
has a complexity 



(3+1)D: Local configurations of matter and gauge fields

Vacuum phase: no particles, no 
field excitations

Charge-Crystal Phase: 
particle-antiparticle dimers



Our approach is very flexible to 
simulate different geometries 
and charge-configurations.

Field-screening and equilibrium 
string-breaking properties in 

presence of external field.

(3+1)D: Quantum Capacitor 



(3+1)D: Quantum Capacitor 



Schwinger Effect

(3+1)D: Quantum Capacitor 
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Weak-coupling Strong-coupling
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Confinement Properties 

Weak-coupling Strong-coupling

Plaquette terms Electric Field Energy

Deconfined phase Confined phase

Kei-Ichi Kondo, Phys. Rev. D 58, 085013 (1998) 



Confinement Properties 

Weak-coupling

Strong-coupling



Going non-Abelian: the Yang-Mills theory

Matter has SU(N) color, the theory is color-invariant.

Similar manipulation as the QED case can be made.



GIOVANNI CATALDI
University of Padua

Giovanni’s Talk
SU(2) Lattice Yang-Mills in (2+1)D



MarcoRigo’s Talk

MARCO RIGOBELLO
University of Padua
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SU(3) with 2 flavors in 1+1D



Work in progress
SU(2) Yang-Mills in 1+1D (Hardcore gluons) is mapped into a model of
Qudits d = 6

r g r

r

g

g

r r gg

Local dressed 

basis

Local dressed basis

0 matter fermions 1 matter fermions

qudit

2 matter fermions

r g

Perfect for trapped ion qudits
(See Martin’s Talk)



Conclusions

• Hamiltonian LGTs are an excellent 
formalism to complement MonteCarlo

• Several LGT models allow us to eliminate 
fermionic matter.

• Short-term goal: Real time simulation of 
scattering processes

• Long-term goal: tensor networks and 
quantum simulation of QCD.

Quantum 
Simulation

Tensor 
Network 

Simulation



THANK YOU





Ground-state properties as a function of  and  
without magnetic terms 

𝑚∨

8×8 𝑙𝑎𝑡𝑡𝑖𝑐𝑒



Finite magnetic-coupling effects 

No changes affecting the 
vacuum configuration 

Nontrivial reorganisation 
of the electric fields, 

global entangled state 
of gauge fields 



Lattice QED in (3+1)D



Lattice QED in (3+1)D

Quantum Link Model 
discretization of Gauge Fields



Local 
Basis

just for comparison, like
 a spin system with 



Ground state properties for 



Ground state properties for 



Confinement Properties 

Weak-coupling Strong-coupling

Plaquette terms Electric Field Energy



Finite Density



interacting vacuum MPS  via DMRG 

initial state via wave packet creation MPOs

time evolution via TEBD & observables

Tensor Networks - Scattering dynamics

MARCO RIGOBELLO
University of Padua

Phys. Rev. D 104, 114501 (2021) 



Tensor Networks - Scattering dynamics

Mesons with opposite 
momenta and internal 

electric fields

Phys. Rev. D 104, 114501 (2021) 



Tensor Networks - Scattering dynamics

 +

+

Vacuum

wave packets
intra-particle

interactions
intra-particle



Tensor Networks 

The wave function is 
described by a network of 
interconnected tensors.

The network pattern 
represents directly the amount 

of entaglement of the state.

R. Orus, Annals of Physics 349 (2014) 117-158



 representation, 
exponentially large in the 
system size. Inefficient.

d-level
systems



 representation, 
exponentially large in the 
system size. Inefficient.

d-level
systems

Trunc.
SVD



Tensor Networks - Scattering dynamics

scaling relation

is  independent

two regimes 

appearance of new effective 
d.o.f. 

Phys. Rev. D 104, 114501 (2021) 



Tensor Networks - Scattering dynamics

Phys. Rev. D 104, 114501 (2021) 

~ S-matrix elements 

overlap of final state with 
pair of meson wave packet
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