Quantum memories based on arrays of shallow donors in silicon

Marco Fanciulli

Department of Materials Science, University of Milano Bicocca, Milano Italy

Motivations

- Quantum memories are indispensable in quantum information applications such as quantum repeaters and hybrid quantum computing architectures.
- Shallow single donors in Si are currently used as qubits: single spin manipulation/readout based on electrical detection of magnetic resonance
- Deep levels could also be used to store information in combination with a semiconductor qubit

T1 and T2

 Arrays of donors (or other impurities) can be used as quantum memories to be coupled with a superconductor qubit

Silicon Based QC: 1998->2023

[B.E. Kane, Nature **393**, 133 (1998)] [A. Morello et al. Adv. Quantum Technol. 3, 2000005 (2020)]

Readout of shallow dopants using the DC current I running through a single-electron transistor (SET) charge sensor. Dopant energy levels (D⁺) and (D⁰) form the two-level system for the ionized nuclear spin and the electron spin qubit, respectively. Transitions are addressable using distinct frequencies (f_1 and f_2) delivered via a coplanar waveguide (CPW).

BICOCCA M. Fanciulli, QubIT-NQSTI Meeting 19/04/2023

Donor electron spin in Si: P

Effective Bohr radius ~ 20-25 Å

interacts with ~ 150 nuclei of ²⁹Si

System of ²⁹Si nuclear spins can be

In a natural Si crystal the donor electron

Lattice constant = 5.43 Å

considered as a spin bath

Spin Hamiltonian

Dipole-dipole nuclear spin interaction:

$$H_{\rm Dip}(i,j) = \mathbf{I}^i \mathbf{D}_{ij} \mathbf{I}^j$$

M. Fanciulli, QubIT-NQSTI Meeting 19/04/2023

Donor electron spin in Si:P

²⁹Si

e

Hyperfine interaction

Contact interaction:

 $H_{\rm Cont} = A S I$

Dipole-dipole interaction:

$$H_{\text{Dip}} = \frac{\boldsymbol{\mu}_{e}\boldsymbol{\mu}_{n}}{r^{3}} - \frac{3(\boldsymbol{\mu}_{e}\mathbf{r})(\boldsymbol{\mu}_{n}\mathbf{r})}{r^{5}}$$

Hyperfine interaction:

$$H_{\rm Hf} = \begin{pmatrix} S_x & S_y & S_z \end{pmatrix} \begin{pmatrix} A_{xx} & A_{xy} & A_{xz} \\ A_{yx} & A_{yy} & A_{yz} \\ A_{zx} & A_{zy} & A_{zz} \end{pmatrix} \begin{pmatrix} I_x \\ I_y \\ I_z \end{pmatrix}$$

Approximations:

Contact interaction only:

$$\mathbf{A} = \begin{pmatrix} A_{xx} & 0 & 0 \\ 0 & A_{yy} & 0 \\ 0 & 0 & A_{zz} \end{pmatrix}$$

High magnetic field

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ A_{zx} & A_{zy} & A_{zz} \end{pmatrix}$$

Contact interaction High magnetic field

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & A_{zz} \end{pmatrix}$$

If I ≥ 1and EFG EFG ≠ 0 (Symmetry) : quadrupole interaction may also be exploited

M. Fanciulli, QubIT-NQSTI Meeting 19/04/2023

Shallow donors in silicon

Nucleus	E _c -E _d [meV]	Nat. Abun d. (%)	gN	I	ENDOR Freq. @0,350 T [MHz]	EZn @0,350 T [eV]	ge	EZe @0,350 T [eV]	EHI [eV]	EHI [MHz]	Zero Field Splitting [MHz]
P31	45,59	100	2,2632	0,5	6,03801	2,50E-08	1,9985	4,04883E-05	4,86E-07	117,53	117,53
As75	53,76	100	0,959647	1,5	2,56025	1,06E-08	1,99837	4,04856E-05	8,20E-07	198,35	396,7
Sb121	42,74	57,21	1,34536	2,5	3,5893	1,48E-08	1,99858	4,04899E-05	7,73E-07	186,802	560,406
Sb123		42,79	0,72851	3,5	1,9436	8,04E-09	1,99858	4,04899E-05	4,20E-07	101,516	406,064
Bi209	70,98	100	0,9134	4,5	2,437	1,01E-08	2,0003	4,05248E-05	6,10E-06	1475,4	7377
Se77(+)	306,5	7,63	1,070149	0,5	2,855058	1,18E-08	2,0057	4,06342E-05	6,87E-06	1660,4	1660,4
Te125(+)	196	7,07	4,740899	0,5	4,740899	5,23E-08	2,0023	4,05653E-05	1,44E-05	3491,65	3491,65

Current state of the art for silicon donor spin qubit

	Time	scales	Quantum Co	mputing	Quantum Sensing		
	T1	T2DD	Single qubit gate time	Single qubit fidelity	Quantity	Sensitivity	
Electron	>1 h (ref.1) (ens), 10 s (ref.2)	10 s (ref.3)) (ens), 0.56 s (ref.4)	~100 ns (ref.5)	99.94%*(ref.6)	Magnetic field (AC)	18 pT/ Hz (ref.4)	
Nuclear	>days (ref.7)	3 h (ref.8) (ens), 35.6 s (ref.4)	~20 µs (ref.7)	99.98%*(ref.9)	Magnetic field (AC)	2 nT/ Hz (ref.10)	

- 1. [1] G. Feher & E. Gere, *Phys. Rev.* **114**, 1245 (1959)
- 2. [120] S.B. Tenberg et al., Phys. Rev. B 99, 205306 (2019)
- 3. [104] A.M. Tyryshkin et al., Nat. Mater. 11, 143 (2012)
- 4. [124] J.P. Dehollain et al., Nat. Nanotechnol. 11, 242 (2016)
- 5. [82] J.J. Pla et al., Nature 489, 541 (2012)
- 6. [127] J.P. Dehollain et al., New J. Phys. 18, 103018 (2016)
- 7. [66] J.J. Pla et al., Nature 496, 334–338 (2013)
- 8. [111] K. Saeedi et al., Science 342, 830–833 (2013)
- 9. [126] J. Muhonen et al., J. Phys. Condens. Matter 27, 154205 (2015)
- 10. [131] A. Morello et al., Adv. Quantum Technol. 3, 2000005 (2020).

ESR detection with superconducting microwave resonator

C. W. Zollitsch et al., Appl. Phys. Lett. 107, 142105 (2015)

Y. Artzi et al., Journal of Magnetic Resonance 334, 107102 (2022)

M. Fanciulli, QuBit-NQSTI Meeting 19/04/2023

Hybrid device (SU/SE)

R: superonducting resonator S: ensemble of donors in silicon Q: Transmon qubit

Proof of concept of a spin-based quantum memory for superconducting qubits.

The resonator has an embedded superconducting quantum interference device (SQUID) and flux line (F) to allow for frequency tunability. This particular device implements a quantum memory, where quantum states from Q are transferred to S via R. [Y. Kubo et al. Phys. Rev. Lett.107, 220501 (2011)]

Research Outline

Materials Science

- Disordered arrays of donors (P, Bi) in nat Si and Isotopicaly purified ²⁸Si
- Novel technology for the realisation of ²⁸Si enriched areas (M. Fanciulli, HZDR 2022 and 2023)
- Ordered arrays of donors (Bi) in natSi and ²⁸Si enriched areas: deterministic doping (HZDR) and other techniques (M. Perego, CNR-Agrate)

Experimental Set-up

- CW-EPR (X-band and Q band, ENDOR, DNP). T=3-300 K
- Pulse EPR (X-band, Qband, ENDOR). T=3-300 K (upgrade or collaoration)
- Pulse EPR broad band, 1-10 GHz, T=10 mK

Quantum Physics

- T1, T2,Hyperpolarization, DNP
- Transfer of quantum
 information from
 electronic spin systems
 to superconducting
 qubits (protocols:
 collaboration with E.
 Ferraro and with Spoke
 1 under discussion)
- Transfer of quantum information between electron and nuclear spins

Conclusions

• For additional information and to discuss a collaboration please contact me: marco.fanciulli@unimib.it

