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Introduction

- DA®NE is an electron-positron collider in operation at LNF for physics experiments

since 1999.

- It is composed of an injection system and two rings (~97 m), one per type of

beam.

- It operates with (usually) 90 bunches at 510 MeV, with a time interval of 2.71 ns
between each other. Typical stored currents are in the range of 1-2 A.

Presently DAFNE is
completing the
commissioning phase,
intended to optimize the
collision conditions in view
of the run with the
SIDDHARTA-2 apparatus.
The latter is being
developed in order to
perform measurements of
kaonic deuterium X-ray
transitions to the
fundamental level.
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-

(see: DAFNE Commissioning for SIDDHARTA-2 experiment. C.Milardi et al. EPAC2021, Campinas, Brasil, 1997)
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Longitudinal Dynamics Introduction

Particles in a storage ring do not all have the nominal energy. Their energy will deviate
from the nominal energy, performing oscillations around it (named synchrotron
oscillations). This means that the particles will have different revolution periods. We will
discuss about the latter in terms of a delay t referred to the nominal revolution period (T,)
of the synchronous particle.

Ve ® Synchronous particle
@ Off-energy particle
e e ¢ — 4
i Tre i .: i
. |
! . T, (rev.) ,'<—>':T (delay)

Ve is the RF cavity voltage
T, is the nominal revolution period (325.73 ns).

Tge is RF cavity period (2.71 ns), which coincides with the time distance between subsequent
bunches (when all the RF buckets are filled)

T is the delay of an off-energy bunch, referred to the synchronous particle



Longitudinal oscillations

Simple case:

« One bunch (considered as a single macro particle) circulating at relativistic speed in a
storage ring.

» Absence of any kind of perturbation.
* No feedback.
« Only small energy oscillations.

The delay of a particle t, referred to the synchronous particle is governed by the following
damped harmonic oscillator equation:

i+ 2d,i+wit=0

* W, is the synchrotron oscillation angular frequency.

, e

» * d,. is the momentum compaction factor.
S

— rf0
EoTo * E, is the nominal energy.

* T, is the revolution period.

* d, is the synchrotron radiation damping rate. V,£(0) is the derivative (in respect of time) of

D dU the voltage of the RF cavity, calculatedatt=0
d, = T with D = < r“d> 0 (synchronous particle)
0

dE

D is the derivative (in respect of energy) of the
energy lost by Synchrotron Radiation,
calculated at E; (synchronous particle)



t+2d,i+wit=0

Longitudinal oscillations

\

>

(for d,<<wy)

T(t) = A-e Ut . cos(wst — Op)

—-

A and O, depend on the initial conditions.

¢= —27fpr - T
phase of the bunch (referred to .. .
the synchronous phase) could be Slmllarly for AE/E,:
used instead. T
T — —
(t) +A-e %" . cos(wst — O 2)
15 x1073 Longitudinal phase space Turn:199 x1 Delay and Energy Turn:199 ,1150-3
T~, P
0.5 =080 i £ Hos
w” = Wi
S 0 T o 0 =
< =k <
0.5 : e .' -0.5
1 Ry Ry
-1 -0.5 0 05 1 0 50 100 150 200
T (delay) [s] %1010 / Turns

7
Exponential decay (e-9) is not visible on this time
scale. 1/d=0.0187 s (~57.000 turns)

See also: The Physics of Electron Storage Rings, M.Sands




Coupled bunch instabilities

To expand our simple case, we can now imagine to have multiple bunches:

« coupled-bunch synchrotron (dipole) oscillations will appear and affect the longitudinal
dynamics of each bunch.

Origin of Coupled-bunch instabilities:

Oscillatory electric fields (wakefields) excited (mostly) in the RF cavity by the bunches,
which interefere with the bunches arriving in the structure afterwards.

/

bunch » bunch n+1 bunch »n+2

i, +2d, %, + w1, =0

U B T R
A/\A/\/\/\/\/\ T, + 2d,1, + w51, _<EOT0 vy 9

Time _

courtesy of D.Teytelman /

Coupled-bunch oscillations are represented by a driving force, that potentially will
make the bunch oscillations unstable.
The higher the circulating current, the higher the coupled-bunch oscillations.

see : SLAC-Report-633. D.Teytelman, 2003



Introducing the Longitudinal Feedback

The feedback is implemented to counter the coupled-bunch instabilities.

%, 4+ 2d, 1, + 02T, = —— . yWK(p)
n r*n S *n EOTO

4 2d, 1, + 02T, = — (VIR (D) — V¥R (D))
n T *n S *Nn E T n
010

/

The feedback acts as a driving force
to stabilize the oscillations.

Vo @0

U1 [0]]

Beam dynamics

Eventhough the coupled-bunch instabilities

create a correlation between the bunches, G(s)

UN_1 ON_1

the DAFNE feedback system treats each
bunch separately.

-1

feedback loop associated with each bunch.

: i
: H(s) '
This is equivalent to have a separate / . :
: :
1 1

courtesy of D.Teytelman
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Feedback Overview

* There are a total of six independent feedback systems.

- Two for the longitudinal phase (e+ and e-),
- two for the vertical position (e+ and e-),
- two for the horizontal position (e+ and e-).

« The feedback systems act on a bunch by bunch basis and in real-time. They adjusts
the phase (longitudinal feedback), the horizontal and vertical position (transverse
feedbacks) independently for each bunch (spaced by 2.7 ns).

« In order to do so, at the passage of the nt" bunch, each system read the relevant
property of it (phase, vertical and horizontal position), elaborates a proper correction
signal and applies it to that specific bunch (after few turns).

The general architecture for each of the six feedback systems is similar.
For this presentation, we will focus on the longitudinal feedbacks.

Page 9/ 41 m



Feedback action

The action of the feedback consists in individual longitudinal kicks to each bunch and
for each turn (excluding decimation tecniques).

Each turn and for each bunch:

Delay (phase) is measured.

Correction signal (longitudinal kick) is elaborated.

Longitudinal Kick is applied.

Since we are measuring the delay t (phase @), but we are going to modify the energy of the bunches,
the correction signal is simply calculated as the measured delay T (phase @), shifted by 1/2 (in
respect of the synchrotron oscillation frequency). Thus, we obtain and apply (after few turns) a
correction signal, which is in anti-phase with the energy oscillations. This will damp the bunch

oscillations. \
, 5 x10°  Longitudinal phase space Turn:198 10710 X Delay and Energy Turn:198 ﬁ?_a
T~, -"""-
' ,H\ 1
0.5 — 09 “ ‘ 0.5
o — [=]
i S " HH“ H|“H||| il ‘H ‘| u
~ 0 55O by it '“ O 5
: . \ H!HH \”‘“"' "”m\w HH!WM 3
05 - -0.5
-1 -1
A 'h../' ‘-f
-1.5 - ' ' ' ' 0
E 0.5 0 0.5 1 0 50 100 150 200 °
T (delay) [s] 10710 Turns
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Longitudinal Feedback

1 5
Beam
—— BPM | —/—FY———F———————————— = — >

2 4

ADC +
‘ Front-end |— Digital Processing + 4| Back-end
DAC

The longitudinal feedback acts on the phase of the bunches. It applies a correction
signal in the form of a longitudinal kick (by means of a RF cavity).

1.

The four signals (up, down, left, right) of one BPM are summed together and sent to the
front-end electronics.

The front-end electronics “transform” the SUM signal in order to get a signal which is
proportional to the phase (delay) of the bunch.

The latter is then digitized and the correction signal is digitally elaborated and
converted to analog (DAC).

The back-end electronics “produce” the excitation signal for the kicker, based on the
DAC output.

The signal (amplified by RF amp.) is then supplied to the kicker. The latter modifies the
bunch energy (by means of a longitudinal kick) with the aim of restoring the bunch
synchronous phase.



Broad-band Button BPM

Beam
Kicker

ADC +
Front-end Digital Processing Back-end RF Amp.
DAC

Up

PW
Combiner

To the front-end

PW
Combiner

PW
Combiner

The BPM used in the feedback are specifically designed for it:

- Transfer Impedance is ~0.5 Q (higher than the ordinary BPM in the same section) and
sufficiently flat at the working frequencies.

- Negligible effects on the beam.

(see: DAFNE broad-band button electrodes. F.Marcellini, M.Serio, A.Stella, M.Zobov. Nuclear Instruments & Methods in

Physics Research, 1997)
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Broad-band Button BPM

Front-end

ADC +

Kicker

Digital Processing Back-end RF Amp:
DAC

Beam

M B0.0 mv

| 60.0 mv

-20.0 mV

-40.0 mv

-60.0 mv
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DIMTEL FBE 368L (Front-end)

Longitudinal

Beam
BPM Kicker

ADC +
Digital Processing Back-end RF Amp:
DAC

The Front-end main functionality is to transform the phase of the BPM signals into
an amplitude signal (to be digitized later on).

Variable
attenuator

Mixer
F BPM )l Two-cycle | AMp: Low pass
(S{l(l)\llmsignal) comb filter | me Filter To ADC
Frequency
fre _)l Multiplier x4 Iiﬁ

Phase shifter

Variable attenuator and phase shifters values are controllable via software.
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DIMTEL FBE 368L (Front-end)

From BPM —S)l
(SUM signal)

Two-cycle
comb filter

I—) To ADC

Variable
attenuator Mixer
Low pass
Filter

fr ——>]

Frequency
Multiplier x4

A

Phase shifter

3 Tdelay=#0.1ns

-

x10

400

300

200

100

Amplitude [V]
o

-100

-200

Data

-286.5
%107

-287.5
t[s]

-288 -287
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DIMTEL FBE 368L (Front-end)

From BPM
(SUM signal)

Variable

attenuator Mixer

_)l

Two-cycle
comb filter

>

Low pass
Filter

I—) To ADC

—

Frequency

Multiplier x4

|7

Phase shlfter

-1.5
162.5

Front end - Mixer 15 LO (mixer)
T delay = +0.1 ns —BPM/Comb Out ' LO (mixer)
>
1 1
- S 05+ -
i)
9
3 0
é
<—05- 1
T;=2.71 1 -1
1 f=4£.11Nns L
:‘ 1
L 1 | 1 1 1 _1 5 | 1 | 1
163 163.5 164 164.5 165 165.5 162.5 163 163.5 164 164.5 165
S X10_9 S X10_9
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DIMTEL FBE 368L (Front-end)

Variable
attenuator Mixer

From BPM _)l Two-cycle
(SUM signal) comb filter |
i Frequency
Multiplier x4

Phase shifter

Low pass
Filter I_) IOADC

Front end - Mixer

1.5 ‘
—BPM/Comb Out
—Mixer Out
Tr LO ]
35 05" -
S,
=
: %rs—
é-
Z -0.5
_1 = ; [
|A =271ns ;:
_15 ! I | | | | 1
162.5 163 163.5 164 164.5 165 165.5
S %107
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Mixer

Mixer

Yin(t) = Ajy sin(w;yt + @py) Your(t) = Yy (t) - Yo (t)

Yio(t) = Ao cos(wrot + @10)

1
Your(t) = EALOAIN - [sin((w;y — wpe)t + (@iv — @10)) + sin((w;y + wio)t + (@n + ©ro))]

:

In our case: (lglN is wnat wle wapt(to r)neasure
_ —A. or small angles: sin ~
w|N - wLO - 4 wRF g (pIN (pIN

Ao =1
Po=0° \ 1 \ )} +[sin((8 * Wrp)t + <P1N)}]

Your(t) = EAIN : [[sin(gom

/ \

DC component 8- wgr cOMponent
(it will be filtered out)
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DIMTEL FBE 368L (Front-end)

Variable
attenuator

Mixer
F BPM 3| Two-cycle | Low pass -
(S{J?\ﬂmsignal) comb filter ? w Filter > To ADC

Frequency
frr 4" Multiplier x4 %@
hase shifter

Front end - Filter Output

1 —:—Mixer Out
Bessel 4t ord. Low Pass Filter 1t ~rilterout |
with f_,=1,1 GHz (~3-f;). —_
3 05
9,
O 4
The output pulse should not 5 0 3
last more than T = 2.71 ns, 3
otherwise crosstalk between £-05
bunches will appear, degrading | _
the feedback performances. G Trf=271ns .
162.5 163 163.5 164 164.5 165 165.5
S %107
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DIMTEL FBE 368L (Front-end)

Variable
attenuator

Low pass 4

From BPM ——— Two-cycle w pa o

(SUM signal) comb filter

Frequency
fre _)l Multiplier x4

hase shifter




Amplitude [a.u.]

DIMTEL FBE 368L (Front-end)

Variable
attenuator Mixer
Two-cycle Low pass 3
(gﬂ?“msaihgn ; | comb filter w @ Filter To ADC
Frequency
frt 4" Multiplier x4
Phase shifter
/
Filter out (all turns) e 15 Filter out (a” turnS)
, —Filter out
05 1 —--ADC out
4 M Tri=2.71ns < ;‘ 05 mﬂ"""mm
18 6. 3:765 6{;?7 6.0275 6.028 6.0285 6.029 ﬂl
i - % - ||H IIIIIIIIIIIIIIIIII 7 S A S A - O O 1 i
S 0 1L EARRSERRAEAAN Ir||||II|||||| H
- One bunch for 110 é. WMMHJ
machine turns. < U
- fsync. = 28.7 kHz 1
- Decimation (ADC) = 6 < Teync =i3£81pis s
_1 .5 | 1 1 1
0 5 10 15 20 25 30




DIMTEL iGP-120F

Longitudinal

l g ‘o
l .
= ol o BPM —
\ 9 g r
finel Integrated Glgasample Processor :
s g )
Iy BT ";ﬁ-{.]f ) 5
| L i FAST Apg, e
'y - g i gyl 3 8[ll Fast
Sey Lo tel
— ! 2] X

Beam

ADC +
Front-end Digital Processing Back-end RF Amp:
DAC

It represents the core of the system. It elaborates the correction signal, based on the

phase measurements.
Block Diagram

Parameter Value IE:;.",;'; LIlgacr: USB driver EPICS TOC  |e] Ethernet
Operating Frequency 368 MHz

ADC resolution 8 bits Triggers »| USB Temperature and
ADC input bandwidth 1.26 GHz f{f‘;ﬁi \—l interface | |_supply monitoring
ADC input Full scale 200 mV,, t J

Number of FIR taps 16

Shift Gain (output adjustment) 20 - 27

DAC resolution 12 bits Input, 1 ADC - FPGA - = pAC [2utput,
DAC rise time (10%-90% FS) under 250 ps

DAC fall time (90%-10% FS) under 350 ps

DAC Full Scale 500 mV_ <_f L

All the parameters and functionalities are Aﬁ':rféxn ailggigir::n%

controllable via software.
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Amplitude [a.u.]

DIMTEL iGP-120F

Longitudinal

BPM

'
-
=y
\ 9
@_@ Integrated Glgasample Processor
T [t
; =, | -

3

Kicker

1 ADC + 2
Front-end Digital Processing Back-end RF Amp:
DAC

Beam

By means of a sinusoidal digital filters (16 taps), we obtain the correction signal for the

n-th bunch. In first approximation, the filter applies a gain (user-selectable) and a phase

shift of -1r/2 to the digitized signal.

ADC and DAC

N
N

~-ADC
~-DAC |

—
o
|
-—

=5
T
L
il

Filter Impulse Response

05" - 305
S,
, =
0 3 0
0.5 2 El
j E -0.5
1 1
15- . 1.5
3 ‘ : )
0 100 200 300 400 500 600 700 0
N turns
Page 23/ 41

16



DIMTEL iGP-120F — DAC OUTPUT

Longitudinal

Beam

BPM Kicker

L] &
el intagratg Glgosompls procegsor

Front-end Digital Processing Back-end RF Amp:
DAC

— |

Mﬁuﬂ :
[so20mv SN0 A
W“WIMH-W .( ] a
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Dafne Long. Feedback (back-end)

IE LONGITUDINAL FEEDBACK|

®\- i\ /: . ®

Longitudinal

BPM

Front-end

ADC +
Digital Processing

The back-end main functionalities are:

— to produce an excitation signal for the Kicker, based on the output of the DAC.

— To adjust the signal delay in order to synchronize the passage of the bunches with the
“correction kick” (by means of COLBY HPDL-1A Progr. Delay Line).

/ ________________________ \
|( Mixer \|
' Progr. '
From DAC i )®——| DEL Y |
| | Beam
| |
f.¢ | ,l QPSK I_I !
[ * I
el J Back-end
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Longitudinal Feedback Back-end

Mixer
From DAC L Progr. b 3 @ 4_)
DELAY
Beam
2

Back-end and Kicker
|

1 I I ]
i | | | | ~——DAC
I I i | 5 i I
4  — 1 }Trf =2.71ns : : —MODOUT |
1 2 ! .‘ l l : ——KICKERIN °
: l I | l L  ——KICKER OUT
| | L i) 1 | !
I I \ | \ | I
| I i i O S A S i
2 I I \ - —_—y " | _
' : 1 1 | : :
] I | |
| i ]
0

Amplitude [a.u.]




Longitudinal Feedback Kicker

roay , y Longitudinal
ey A L ¢ Beam
| (i BPM
ADC +
Front-end Digital Processing Back-end RF Amp:
DAC

Transmission coefficient

Pl”-boxca\"tyloadEdWIth ||||ill:|_i||||:!||||§||||§|||:
6 ridged waveguides ! : | |

I'l'IiTI1Ii'IIIIEIIII

S21
=
T

Courtesy of FMarcellini ™ | | gl -
""""" measurements
TMO010 (main mode): | —— HFSS data g
Res. Frequency = 3.25 x fif (~1.2 GHz) 0.5
1050 1100 1150 1200 1250 1300 1350
BW ~220 MHz f [MHz]

(see: A Waveguide overloaded Cavity as Longitudinal Kicker for the DAFNE Bunch-by-bunch feedback system. R.Boni,
A.Gallo, A.Ghigo, F.Marcellini, M.Serio, M.Zobov. Particle Accelerators, 1996, Vol.52, pp 95-113)
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Longltudlnal e- Feedback

) -BPM (BPBES 108)

The signals of the four electrodes are
summed together (with power
combiners) and sent to the electronics.
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Longitudinal e- Feedback

) -ELECTRONICS
(instr. room — Rack 46 - multiple devices)

The analogue signal is adjusted (front-
end) and digitized (ADC). The correction
signal is calculated, transformed in an
~__ analogue signal (DAC), adjusted (back-

- end + delay unit) and sent to the RF
amplifiers.
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Longitudinal e- Feedback

" - RF AMPLIFIERS
(Rack 54 - Three units)

The correction signal is amplified and
sent to the kicker (through circulators)
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Longltudlnal e- Feedback

" - KICKER

The correction signal is applied to the
bunches with a longitudinal kicker (RF
resonator).
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Longltudlnal e- Feedback

=

- BPM (BPBES 108)

The signals of the four electrodes are
summed together (with power
combiners) and sent to the electronics.

- ELECTRONICS

- (instr. room — Rack 46 - multiple devices)
 The analogue signal is adjusted (front-

end) and digitized (ADC). The correction
signal is calculated, transformed in an

| analogue signal (DAC), adjusted (back-

end + delay unit) and sent to the RF

| amplifiers.

- RF AMPLIFIERS
(Rack 54 - Three units)

The correction signal is amplified and
sent to the kicker (through circulators)

- KICKER

The correction signal is applied to the
bunches with a longitudinal kicker (RF
resonator).
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Longltudlnal e+ Feedback

) -BPM (BPBPS 108)

The signals of the four electrodes are
summed together (with power
combiners) and sent to the electronics.

- ELECTRONICS

- (instr. room — Rack 46 - multiple devices)
 The analogue signal is adjusted (front-

end) and digitized (ADC). The correction
signal is calculated, transformed in an

| analogue signal (DAC), adjusted (back-

end + delay unit) and sent to the RF

| amplifiers.

- RF AMPLIFIERS
(Rack 51 - Three units)

The correction signal is amplified and
sent to the kicker (through circulators)

- KICKER

The correction signal is applied to the
bunches with a longitudinal kicker (RF
resonator).
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Beam Spectrum

:I Spectrum Analyzer

In order to observe beam instabilities during operations, beam spectrum is measured from
the combination of signals (Vup - Vdown) + (Vieft - Vright) from one BPM.

This is an independent measurement system from the feedback, but it is a useful tool to
diagnose instabilities and feedback behaviours.
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Beam Spectrum

* Instabilities will appear as side bands on every harmonic.

« Longitudinal instabilities will appear as phase modulations of the beam spectrum with a
frequency dependent on synchrotron tune.

In this example (positrons):

* revolution frequency (frev) = 3.072 MHz

« synchrotron frequency (fs) = 29.2 kHz

* synchrotron tune (Qs) = fs/frev = 0.0095

* Number of revolutions to complete one synchrotron oscillation: 105.2

“ Trace 1 [7] Show Avg (VRMS) Avg 5 | Clear |
=[30. -30.0 -
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dBm [ WY 362 522605 MHz 362 551772 MHz
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Example of beam spectrum with Positron beam (100 bunches) with lavg = 150 mA. Long. feedback turned off.



Longitudinal oscillations

« Longitudinal oscillations from different perspectives
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Spares
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P. Raimondi , 2° SuperB Workshop, March 2006,
P Raimondi, D Shatilov, M_Zobov, physics/0702033,
C. Milardi et al_, Int.J Mod Phys A24, 2009.

“Proposal for a ®-factory”, LNF-90/031 (IR),1990.

DA®NE DA®NE
native Crab-Waist
Energy (MeV) 510 510
0 .s/2 (mrad) 12.5 25
£, (mmemrad) 0.34 0.28
B,* (cm) 160 23
o,* (mm) 0.70 0.25
-~ 0.6 15
B,* (cm) 1.80 0.85
o,* (um) low current 54 3.1
Coupling, % 0.5 0.5
Bunch spacing (ns) 2.7 =20
bounch (MA) 13 13
o,(mm) 25 15
N, 120 120

Colliding Beams have:

low E

high currents
short bunch spacing 2.7 nsec
long damping time




Horizontal and Feedback

1 3
Beam
—_—— BPM bHH—————"————— - - - ————— Kicker —p
2
ADC +
Digital Processing + RF Amp.
DAC

The transverse feedbacks acts on the horizontal and vertical position of the bunches.
They apply a correction signal in the form of a transverse kick (by means of stripline kickers).

1. The signals from the horizontal (or vertical) electrodes of one BPM are subtracted and
sent to the front-end electronics.
Exception: e- and e+ feedbacks use only the signal from the bottom (up for e+)
electrode of the BPM (BPBES 202 and BPBPS 202).

2. The latter is then digitized and the correction signal is digitally elaborated and
converted to analog (DAC).

3. The signal (amplified by RF amp.) is then supplied to the horizontal (or vertical) kicker.
The latter modifies the horizontal (or vertical) momentum (by means of a transverse kick)
with the aim of restoring the bunch standard orbit.

Detail of the transverse Feedbacks will be described in details in the future
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Longitudinal Feedback Back-end

Mixer 1 2
Progr.
From DAC DELAY @ —_—
Beam
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E | 3.25 * frf

Back-end and Kicker (single shot)
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