Top cross section

L. Bellagamba, G. Bruni, R. Di Sipio, M. Corradi M. Romano⁽¹⁾ G. Gagliardi, B. Osculati-Becchi⁽²⁾

A. Andreazza, <u>M. I. Besana</u>, A. Favareto, T. Lari, V. Lombardo*, F. Meloni, C. Troncon⁽³⁾

M. Cobal, B. Acharya, M. Pinamonti, K. Suruliz, R. Soualah, K. Shaw, U. De Sanctis⁽⁴⁾

(1) Bologna, (2) Genova, (3) Milano, (4) Udine e ICTP Trieste * Moved to Annecy laboratory

- Introduction
 - analysis description
 - people involved and covered tasks
- Results obtained on 2010 data
 - results for Moriond conferences
- Conclusions and future plans

Publication list

- Summer conference notes 2010:
 - Search for top pair candidate events in ATLAS at $\sqrt{s=7}$ TeV (ATLAS-CONF-2010-063).
 - Expected event distributions for early top pair candidates in ATLAS at $\sqrt{s=7}$ TeV (<u>ATLAS-PHYS-PUB-2010-012</u>).
 - Background studies for top pair production in lepton plus jets final states in sqrt(s)=7 TeV ATLAS data (ATLAS-CONF-2010-087).
- Top paper: <u>EPJC 71 (2011) 1577</u>,
 - Estimation of the W+Jets Background for Top Quark Re-Discovery in the Single Lepton+Jets Channel (<u>ATL-COM-PHYS-2010-834</u>),
 - Mis-identified lepton backgrounds to top quark pair production: Supporting note 5 (<u>ATL-COM-PHYS-2010-849</u>).
 - Observation of top quark pair production in the semileptonic decay channel at sqrt(s) = 7 TeV with the ATLAS detector (<u>ATL-COM-PHYS-2010-855</u>)
- Moriond 2011 conference:
 - Top Quark Pair Production Cross-section Measurement in ATLAS in the Single Lepton+Jets Channel without b-tagging (<u>ATLAS-CONF-2011-023</u>)
 - Measurement of the top quark pair cross-section with ATLAS in pp collisions at $\sqrt{s} = 7$ TeV in the single-lepton channel using b-tagging (<u>ATLAS-CONF-2011-035</u>)
 - A combined measurement of the top quark pair production cross-section using dilepton and single-lepton final states (<u>ATLAS-CONF-2011-040</u>)
 - Cut-and-count measurement of the top quark pair production in the semileptonic decay channel at sqrt(s)=7 TeV with the ATLAS detector (<u>ATL-COM-PHYS-2011-122</u>)

- The aim of the Italian group analysis is the measurement of top quark pair production cross section.
- The analysis is performed in the single lepton channel, events are characterized by:
 - 1 electron or 1 muon,
 - missing transverse energy,
 - at least 4 jets, 2 of them are b-jets

Simple cut count method used:

$$\sigma(t\bar{t}) = \frac{N_{sig}}{L \times \epsilon} = \frac{N_{obs} - N_{bkg}}{L \times \epsilon}$$

- N_{obs} = number of observed events in data
- N_{back} = expected number of background events
- L = integrated luminosity
- ε = signal selection efficiency, including BR, acceptance, trigger and cuts
- Most powerful analysis technique with low statistics
 - it enjoys lower statistical error with respect to fit methods
 - limited number of systematics affecting the measurement

Selection of signal candidates in data:

Analysis needs

- general task within top group
- Systematics coming from the selection:
 - input from Top Reconstruction group, contribution from GENOVA for b-tagging (see F. Parodi's talk)
- Background estimation, data-driven methods for the most important backgrounds:
 - W+ jets: Berends scaling method **MILANO** and **BONN**
 - W+ jets: W to Z ratio MILANO and BONN
 - W+ jets: Charge asymmetry **UDINE**
 - QCD: some work done in Udine and Milano, final estimation from DESY (echannel) IFAE and GOTTINGEN (μ-channel)
- Signal acceptance: UDINE
- Single channel cross section measurement: UDINE
- Combination of electron and muon channel: BOLOGNA
 18/05/2011
 M.I. Besana, V Physics Workshop ATLAS Italia

Work organization

- Good collaboration between Italian groups:
 - all tasks (except QCD) covered by Italian groups
 - weekly meetings
- Bi-weekly ATLAS meeting dedicated to this analysis chaired by Tommaso Lari (Milano) and Kerim Suruliz (Udine).

Results obtained with 2010 data: integrated luminosity of 35.3 pb⁻¹

in e-channel and from 0.6 to \sim 3 in µ-channel. Price to pay: systematic uncertainty on b-tagging.

W+jets estimate I

3 methods for the estimate WITHOUT b-tagging request:

- W to Z ratio method:
 - basic observation: uncertainty on W to Z ratio is significantly lower with respect to W+ ≥ 4jets MC uncertainty,
 - best performance for Moriond analysis
- Berends scaling method:
 - based on the observation that ratio of W+(n+1)jets to W+njets is expected to be constant as a function of n (Berends scaling),
 - it has been used for W+jets estimation in the analysis with 2.9 pb⁻¹: lower statistical error (~ 5%), but higher systematic uncertainty: ~20%.
- Charge asymmetry method:
 - based on the observation that W production at the LHC is charge asymmetric and that r = W⁺/W⁻ is better predicted by Monte Carlo simulation than the total W contribution,
 - very powerful with higher luminosity: low systematic error (<10%), but high statistical uncertainty: ~28%,

$$N_{W+\geq 4\,jets} = C_{MC} \cdot \frac{N_{Z+\geq 4\,jets}}{N_{Z+1\,jet}} \cdot N_{W+1\,jet}$$

$$N_{W+\geq 4\,jets} = \sum_{i\geq 2} \left(\left(\frac{N_{W+2,jets}}{N_{W+1,jet}} \right)^i \cdot N_{W+2,jet} \right)$$

$$N_{W+\geq 4\,jets} = \left(\frac{r+1}{r-1}\right)_{MC} \cdot (N^+ - N^-)$$

W+jets estimate II

 W to Z ratio method: best performance and used as default. The other methods have been used as crosschecks

$$N_{W+\geq 4 jets} = C_{MC} \cdot \frac{N_{Z+\geq 4 jets}}{N_{Z+1 jet}} \cdot N_{W+1 jet}$$
$$C_{MC} = \left(\frac{N_{Z+1 jet}}{N_{Z+\geq 4 jets}} \cdot \frac{N_{W+\geq 4 jets}}{N_{W+1 jet}}\right)_{MC}$$

Channel	Electron	Muon
Estimated $W \rightarrow l\nu$	150.7	290.6
Estimated $W \rightarrow \tau v$	6	19
Statistical uncertainty	21%	17%
Purity of control samples	3%	2%
Theoretical uncertainties	12%	9.4%
Jet energy scale	3%	3%
PDFs	3.2%	3.2%
Total W+jets background	156.7 ± 38.1	309.6 ± 61.1

M.I. Besana, V Physics Workshop ATLAS Italia

W+jets estimate III

Estimate <u>with b-tagging</u> request:

$$N_{W+\geq 4\,jets}^{tagged} = f_{b-tagged} \cdot N_{W+\geq 4\,jets}^{pre-tag}$$

- $f_{b-tagged}$ is the fraction of W events that passes b-tagging request, obtained by:
- measuring the tag fraction in 2 jets sample (no significant tT contamination):
 - 0.028 ± 0.005 (stat) ± 0.004 (syst) e channel
 - 0.040 ± 0.004 (stat) ± 0.003 (syst) μ channel
- use Monte Carlo for extrapolation from 2 jets bin to 4 jets bin
 - 2.8 ± 0.8 (syst) e channel
 - 3.2 ± 0.9 (syst) μ channel
- Final result:
 - W^{bTag} = 12.2 ± 4.0 (stat) ± 3.6 (syst) e channel
 - W^{bTag} = 39.5 ± 8.4 (stat) ± 11.7 (syst) μ channel

Data

QCD model from data

MC processes

Candidate Event

QCD estimate: e-channel

Fit method

- select a QCD-enriched sample by inverting some electron identification cuts,
- template for E_T^{miss} distribution,

18/05/2011

M.I. Besana, V Physics Workshop ATLAS Italia

QCD estimate: µ-channel I

- matrix method
 - assumption: E_T^{miss} shape is independent from lepton ID cuts
 - define a control sample with looser selection cuts on the lepton (remove the isolation),
 - QCD is estimated by solving this 2x2 syst

$$\begin{array}{lll} N^{\rm loose} &=& N^{\rm loose}_{\rm real} + N^{\rm loose}_{\rm fake}, \\ N^{\rm tight} &=& \varepsilon_{\rm real} N^{\rm loose}_{\rm real} + \varepsilon_{\rm fake} N^{\rm loose}_{\rm fake}, \end{array}$$

Loose lepton selection

- N^{tight} = number of events with one muon passing all top selection cuts
- N^{loose} = number of events with one muon passing looser selection cuts
- ϵ_{real} measured with Z sample as a function of η
- ϵ_{fake} measured for $E_T^{miss} < 10$ GeV as a function of η

QCD estimate: µ-channel I

16

Cross section measurement

Channel	Cross section (pb)
e+jets pre-tag	$159 \pm 17 {+50 \atop -44} \pm 5$
µ+jets pre-tag	$148 \pm 16^{+47}_{-47} \pm 5$
e+jets tag	$153 \pm 16^{+41}_{-27} \pm 6$
µ+jets tag	$159 \pm 14 {}^{+35}_{-27} \pm 6$

- Main sources of systematics:
 - ISR/FSR,
 - Jet energy scale
 - W+jets normalization (pre-tag measurement) and b-tagging (tag measurement)

Channels combination

- To combine e and µ channels (reducing the statistical uncertainty), the correlation between systematic uncertainties has to be taken into account
- Bayesian approach has been used
 - the result is an a posteriori probability distribution
 - the most probable value is taken as measured value

• Final result:

Channel	Cross section
pre-tag	$\sigma_{t\bar{t}} = 154 {+52 \atop -47} \text{ pb}$
tag	$\sigma_{t\bar{t}} = 156 {+37 \atop -29} \text{ pb}$

How our analysis in included in ATLAS?

First publication 2.9 pb⁻¹

 ATLAS top group first publication:

> Measurement of the top quark pair production cross-section with ATLAS in pp collisions at sqrt(s) = 7 TeV [EPJC 71 (2011) 1577],

- it reports the first measurement of the production cross-section for top quark pairs(tT) in pp collisions at sqrt(s)=7 TeV
- analysis performed using 2.9 pb⁻¹ of data
- Crucial contribution from Italian groups: <u>our analysis was the</u> <u>default one</u>

Moriond analysis I

- Multivariate techniques have become more powerful
- Default analysis WITHOUT b-tagging = multivariate technique which uses:
 - lepton pseudorapidity (leptons from tT more central)
 - lepton charge (W production in pp collisions is chargeasymmetric)
 - exponential of the event aplanarity (tT events more isotropic)

Moriond analysis II

- Default analysis WITH b-tagging = multivariate technique which uses:

 ATLAS Preliminary
 - lepton pseudorapidity
 - event aplanarity
 - transverse energy of jets involved in the event
 - b-tagging weight of jets

- BUT important role within Top Working group:
 - Tommaso Lari (Milano) and Kerim Suruliz (Udine/ICTP) editors of INT note on cut-count analysis,
 - Bobby Acharya (Udine/ICTP) editor of one of Moriond conf notes (ATLAS-CONF-2011-023) and editor of the paper on full 2010 data which is in preparation.

Conclusions and outlooks

- What have we done since last year?
 - important contribution to top notes for summer conferences:
 - Search for top pair candidate events in ATLAS at $\sqrt{s=7}$ TeV (ATLAS-CONF-2010-063).
 - Expected event distributions for early top pair candidates in ATLAS at $\sqrt{s=7}$ TeV (ATLAS-PHYS-PUB-2010-012).
 - Background studies for top pair production in lepton plus jets final states in sqrt(s)=7 TeV ATLAS data (ATLAS-CONF-2010-087).
 - our analysis has been the default one reported in top paper:
 - EPJC 71 (2011) 1577,
 - our analysis repeated we full 2010 statistics has been an important cross check for Moriond:
 - Top Quark Pair Production Cross-section Measurement in ATLAS in the Single Lepton+Jets Channel without b-tagging (ATLAS-CONF-2011-023)
 - Measurement of the top quark pair cross-section with ATLAS in pp collisions at $\sqrt{s} = 7$ TeV in the single-lepton channel using b-tagging (ATLAS-CONF-2011-035)
 - Cut-and-count measurement of the top quark pair production in the semileptonic decay channel at sqrt(s)=7 TeV with the ATLAS detector (ATL-COM-PHYS-2011-122)

- Present situation:
 - multivariate techniques more competitive than cut and count:
 - on 2011 data statistical error would be negligible
 - systematic error of the order of 12% for Moriond: expect an improvement coming from lower uncertainty from (ex.) on btagging and JES
 - the cut & count method still provides a common ground for other more specific top-related analysis, such as top-antitop resonance or charge asymmetry.

- Future plans: groups have already moved to other analysis
 - Susy-dilepton (see M. Bianco's talk): Milano and Udine
 - Top charge asymmetry measurement (see U. De Sanctis's talk): Milano, Udine and Bologna
 - tT selection and reconstruction (MI-UD-BO)
 - study of observables (MI-UD-BO)
 - background estimation (common within top group, these estimations can be used for other analysis):
 - W+jets: (MI-UD)
 - QCD (UD)
 - unfolding (BO)
 - Top quark pair cross section in all hadronic channel: Genova

W+jets estimate III

- Berends scaling: 179.6 ± 47.2 (e-ch.), 320.7 ± 68.1 (μ-ch)
 - statistical error is negligible ~5%.
 - high systematic uncertainty on the method
 - 22% e-ch,
 - 19% µ-ch
- Charge asymmetry: 242 ± 83 (e-ch.), 379 ± 106 (μ-ch)
 - lower systematics: <10% (main contribution from PDF uncertainty)
 - high statistical error:
 - 33% e-ch,
 - 27% µ-ch

Signal acceptance

rel.uncertainty(%)	e+jets	μ +jets	e+jets	μ +jets
	pre-tag	pre-tag	tagged	tagged
b/c-tagging efficiency	0	0	+9.1/-10.4	+9.2/-10.5
light jets tagging efficiency	0	0	±0.2	±0.2
lepton trigger, reconstruction and selection	±3.6	±0.9	±3.6	±0.9
jet energy scale	+9.0/-9.1	+7.8/-8.7	+8.9/-9.0	+7.6/-8.5
jet energy resolution	±0.2	±0.2	±0.4	±0.4
jet reconstruction efficiency	±2	±2	±3	±3
electron energy scale	+0.2/-0.6	0	+0.2/-0.6	0
electron energy resolution	±0.2	0	±0.2	0
muon momentum scale	0	±0.3	0	±0.3
muon momentum resolution	0	±0.1	0	±0.1
ISR/FSR	+7.0/-9.6	+4.8/-9.3	+7.2/-8.2	+6.3/-7.7
NLO generator (MC@NLO v.s. Powheg)	±6.6	±5.0	±6.5	±2.7
Parton Shower generator (HERWIG V.S. PYTHIA)	±4.6	±3.8	±4.6	±3.8
PDFs	±1.7	±1.4	±1.9	±1.6
Pile up	-1.2	-1.2	-0.6	-0.8
ТОТ	+19.2 -15.3	+15.0 -15.3	+14.4 - 19.9	+16.1 -15.5

Cross section

Source	$\Delta\sigma(e)/\sigma[\%]$	$\Delta\sigma(\mu)/\sigma[\%]$	$\Delta\sigma(e)/\sigma[\%]$	$\Delta\sigma(\mu)/\sigma[\%]$
	pre-tag	pre-tag	tagged	tagged
Statistical error	10.4	10.2	9.9	8.6
Object selection				
Lepton Reco, ID, Trigger	+3.8/-3.5	+1.0/-0.9	+3.8/-3.5	+1.0/-0.9
Jet energy Reco	+14.1/-11.8	+14.5/-12.3	+11.4/-9.6	+9.9/-8.5
b-tagging	-	-	+11.7/-8.4	+11.7/-8.4
Background rate				
QCD norm	4.4	6.1	6.2	0.7
W+jets norm	19.5	23.4	4.1	7.7
Other bkg norm	5.7	6.1	0.7	0.7
Signal simulation				
ISR/FSR	+10.6/-6.5	+10.3/-4.6	+8.9/-6.7	+8.3/-5.9
PDF	1.7	1.4	1.9	1.6
Parton Shower	+4.8/-4.4	+4.0/-3.7	+4.8/-4.4	+4.0/-3.7
NLO generator	+7.1/-6.2	+5.3/-4.8	+7.0/-6.1	+2.8/-2.6
Pile-up	1.2	1.2	0.6	0.8
Sum systematics	+28.9/-26.2	+31.4/-28.9	+22.2/-18.4	+19.8/-16.2
Integrated Luminosity	+3.8/-3.6	+3.8/-3.6	+3.5/-3.3	+3.5/-3.3

M.I. Besana, V Physics Workshop ATLAS Italia