

U. De Sanctis (Udine) on behalf of the "Italian cluster for top"

L. Bellagamba, G. Bruni, R. Di Sipio, M. Romano (Bologna); A. Andreazza, I. Besana, A. Favareto, T. Lari, C. Troncon (Milano); B. Acharya, M. Cobal, M. Pinamonti, K. Shaw, R. Souhalah (Udine);

Outline

- > Which asymmetry?;
- Studies ongoing @ TEVATRON;
- Asymmetries @ LHC;
- Italian contribution in ATLAS & schedule;
- Preliminary analysis on 2010/2011 data and MC;
- Conclusions and outlooks

Which asymmetry?

1

Charge asymmetry:

- No discrimination between t and tbar in LO ttbar production
- Radiative corrections and interference in NLO lead to asymmetry in differential t and thar distributions:
- qqbar asymmetric
- gg symmetric
- qg asymmetric (but negligible)

$$\hat{A}(\cos\hat{\theta}) = \frac{N_t(\cos\hat{\theta}) - N_{\bar{t}}(\cos\hat{\theta})}{N_t(\cos\hat{\theta}) + N_{\bar{t}}(\cos\hat{\theta})}$$

Hadron colliders:

difficult to reconstruct the partons 4-vectors. Then, look at variables in the lab. frame. In particular:

$$\hat{\mathcal{G}} \to \Delta Y = Y_t - Y_{\bar{t}}$$

3

TEVATRON RESULTS (1)

Semileptonic channel (e, μ), \geq 1 b-tag, χ^2 top reconstruction with W, top mass constraints

inclusive $\Delta y = q \cdot (y_1 - y_h)$

then

- bkg subtract
 - yields tt "signal" at reco level
- unfold acceptance & resolution
 - yields tt at "parton level"

sample	level	$A^{t\overline{t}}$
data	data	0.057 ± 0.028
MC@NLO	$t\bar{t}$ +bkg	0.017 ± 0.004
data	signal	0.075 ± 0.037
MC@NLO	$t\bar{t}$	0.024 ± 0.005
data	parton	0.158 ± 0.074
MCFM	parton	0.058 ± 0.009

Unfolded result: 0.158 ± 0.074 (QCD 0.058 ± 0.009)

TEVATRON RESULTS (2)

Dileptonic channel (e, μ), \geq 2 jets, HT > 200 GeV, MET > 25 GeV.

tt system reconstruction

Kinematic likelihood fit + W and top mass constraints

Leptons informations

Look at $\Delta\eta$ between leptons, quite well correlated with ΔY

Which asymmetry @ LHC ?

 \rightarrow pp collider \rightarrow gg dominates the tt production (~80%) + asymmetry is a tiny NLO effect present only in qq events; \succ In qq events one cannot distinguish the direction of the quark $\rightarrow \Delta Y$ and $\Delta \eta$ symmetric, need other variables. \succ Use the pdf: valence q are more boosted than sea anti-q;

- use ΔY and $\Delta \eta$ + request Y(tt) >0 (or < 0); - use $\Delta |Y|$ and $\Delta |\eta|$ (as CMS);

→ $A(\Delta|Y|) = 0.027 \pm 0.004$ gg+qq sample $\rightarrow A(\Delta|Y|) = 0.009 \pm 0.002$

Very challenging measurement with 1 fb⁻¹!!!

CMS RESULTS

CMS measurement:

• Asymmetry variable: $|\eta_t| - |\eta_{ar{t}}|$

$$A_C = \frac{N^+ - N^-}{N^+ + N^-}$$

• SM prediction: $A_C^{SM} = 0.0130(11)$

• Observation: $A_C = 0.060 \pm 0.134$ (stat.)

ATLAS situation

Common effort: no different analyses to measure the asymmetry.

The collaboration among different institutes just started based on a Twiki where all the groups involved put their interests.

We have studied both single and dilepton channels: even if dilepton signal is cleaner, the lower cross-section and difficulty to reconstruct the tt system make this measurement more difficult with the target int. luminosity of 1 fb-1.

Italian interests: single lepton channel

- It selection: BO, MI, UD + Barcelona , Annecy;
- > tt reco: **BO**, **MI**, **UD** (χ 2 method) + Gottingen, Barcelona (KL fitter);
- Background est. : QCD (UD), W+jets (UD, MI) + Barcelona;
- Observables: BO, MI, UD;
- Unfolding: BO + Hamburg
- Following the tt cross-section experience, we are already clustered and coordinated in our activities.

- Weekly-based meeting to update our studies and common talks at the WG (bi-weekly).

- No other groups (apart those above) seem interested in single-lepton channel, but never say never... U. De Sanctis (Udine), VATLAS IT workshop

• goal:

- draft of journal publication ready for approval on the time scale of the EPS conference

- preliminary result if time is too short

timescale for EPS:

https://indico.cern.ch:443/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=133328

- INT note posted on June 10th with dataset for pre-approval
- INT note posted on June 27th on the full dataset

Proposed EPS schedule – working backwards

- Thu July 21- Conference starts
- Mon July 18 Final reader approval
- Tue July 12 ATLAS approval meeting
- Mon July 4 CONF note circulation
- Tue June 28 top-wg approval on full data
- Mon June 27 INT/CONF on full data posted
- Wed June 22 full dataset available for analysis
- Wed June 15– End of LHC run
- Tue June 14 top-wg analysis pre-approval
- Fri June 10 INT note posted
- Fri June 3 Cut dataset for preapproval
- Thu May 19- Signoff on TopPhys production cacheto pre-approval)
- Sat May 14– Start of LHC run
- Thu May 12 Finalization of object definitions

5.5 weeks approval time starting from pre-approval

2 weeks available for analysis of full data to preapproval 5 weeks available for analysis (from ~100 pb-1 to pre-approval) +2 weeks to

+2 weeks to final approval for both

from W. Werkerke

Selection/reconstruction issues (1)

Evaluate the number of tt events (MC@NLO) passing cuts and evaluate the efficiencies and the ratio qq/gg

Effect of selection cuts on qq fraction II

SELECTION CUTS All events а., Trigger а. Good vertex з. Jet/MET cleaning 4. # mu > 0 ٩, # mu = 1 6. # el = 07. Trigger match 8. el/mu overlap removal Q., MET>20 GeV 10. $MET + W_mT > 65 GeV$ ш., 2j25 12. 4125 13, 1 b-tag

μ channel from Bologna

-Moriond cuts seems to slighlty enhance the gg (blue) fraction w.r.t the qq (red); - Same for e channel

- Our selection is enhancing gg contribution:
 - more jets in event coming from gg production mechanism
- Optimization? BUT it's dangerous to optimize something that is not completely under control (PDF uncert, qg channel?, etc..)
- Since this enhancement is not dramatic, we can live with this selection for the moment and then provide an optimized selection or a likelihood later on.

Selection/reconstruction issues (2)

Comparison between χ^2 fitter and CSC reconstruction method I

- Comparison between χ² fitter and CSC top reconstruction method,
- The fraction of events in which the reconstructed top is within ΔR=0.4 from true top is calculated

CSC Method

 $t_{\rm had} = m_{\rm jj}$ maximizing p_T

 $\mathcal{W}_{had} = min \; [m_j\text{-}m_W^{PDG}] \; in \; t_{had}$

 $b_{had} = j$ in f_{had} not in W_{had}

 $W_{lopt} = l^{\pm} + v(m_W \text{ constraint})$

$$\int_{a}^{2} b_{lept} = \Delta R_{min}(W_{lept}, j), j \text{ not in } t_{had}$$

×2 /

- $\sigma_{top} \sim 16$ GeV, measured from a gaussian fit on m_{jjj} distribution (selected with CSC method) only for events in which all the 4 jets are matched with truth
- $\sigma_W \sim 8.6$ GeV, measured from a gaussian fit on m_{jj} distribution only for events in which both the 2 jets are matched with truth
- the fit method works for any number of tagged jets:
 - o tagged jets: all combination taken into account,
 - 1 tagged jet: this jet is required to come from top and not from W,

x2 /

- 2 tagged jets: both included in top reconstruction mass,
- >2 tagged jets: 2 of them included in top reconstruction

Under study the addition of the jet resolution term into the formula.

Selection/reconstruction issues (3)

From BO:

-Evaluation of the matching between reco and truth tops;

- CSC vs χ 2 method;
- χ 2 better than CSC (60% vs 45% in Δ R<0.4);

From UD:

- Effect of the reco algorithms on ΔY :
- 76% efficiency in correctly reconstructing
 ∆Y sign (70% with CSC)

Do selection cuts affect the asymmetry?

Asymmetry changes after selection cuts: acceptance or detector effect? To disentangle: look at the truth info for events passing the reco cuts. In particular evaluate charge asymmetry using **truth tops 4-vectors** after: - No selection cuts;

- Acceptance cuts on the truth objects (PT, η , MET);

- Reconstruction cuts;

In addition, following B. Webber suggestions, we prepared a reweighting tool that change the weight of qq events in order to simulate the excess measured by CDF at high inv.mass of the ttbar system:

$$1 + f(m_{t\bar{t}}) \tanh(\Delta y/2)$$
 where $f(m_{t\bar{t}}) = m_{t\bar{t}}/(200 GeV) - 2$

In practice, instead of simulating dozen of BSM samples, one introduces a fictitious contribution following what CDF measured...cheapest and easiest!! **STUDY: evaluate the evolution of the asymmetry w.r.t ttbar inv.mass and production mechanisms.**

- Asymmetry diluted at the reco level (visible in BSM sample rich in qq);
 Not so trivial to disentangle...need unfolding and more careful
- investigation on MC acceptance;
- Estimated significance: 2σ (only stat) with 1 fb⁻¹ for M(tt) > 800 GeV.

V ATLAS IT workshop

2010/2011 DATA (1)

- DATA 2010 + 2011 (B2-D6 period); MC10a (with pile-up);
- Selection cuts as Moriond: (PT(lep) > 20 GeV, MET>20 GeV, at least
- 4 jets with PT> 25 GeV) BUT PT threshold for electron raised to 25 GeV (e20 is used in 2011 data);
- MC rescaling using the pileup reweighting tool;
- Top reco algorithms: χ^2 and CSC methods;
- No lepton or b-jet scale factors used;
- QCD estimation: matrix method

2010/2011 DATA (2)

From Udine

χ 2 method for all plots

V ATLAS IT workshop

2010/2011 DATA (3)

χ **2** *method for all plots* From Udine

$$A = \frac{N(\Delta > 0) - N(\Delta < 0)}{N(\Delta > 0) + N(\Delta < 0)}$$

where $\Delta = |Ytop| - |Yantitop|$

- No unexpected huge asymmetry ⊗ ;
- A = -0.080 \pm 0.046 (μ pre-tag);
- A = -0.027 ± 0.037 (µ b-tag);
- Need data driven
 estimation of W+jets
 background (asymmetric?)
 Ask for 2 b-tags: less
 background but dominated
 by the statistical errors;

Conclusions & outlooks

- The effort to measure the charge asymmetry in ttbar events started;
- Difficult measurement, but feasible with some fb-1;
- Italian cluster is working well (good information flow, regular meetings, real collaboration and tasks division) and also our contribution to the WG is clearly visible;
- ATLAS effort just started. We will have a tight schedule to fit within EPS deadline;
- Still some technicalities to be put in place (pile-up, KL fitter, systematics);
- We are finishing a preliminary phase: the discussion about tools, variables and tasks in the WG will be finalized soon and the hunt will be open....