

b- e c-tagging calibration, b cross section

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

> V ATLAS-Italia Physics Workshop Napoli, 18-19 Maggio 2011

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

b- e c-tagging calibration, b cross section

Università degli Studi di Genova

Introduzione

La ricostruzione di mesoni B e D costituisce uno strumento essenziale per la misura delle sezioni d'urto di produzione di b e c e per la calibrazione del flavour tagging su campioni puri.

Si è scelto di usare i campioni di $b \to D^* \mu X$ e $b, c \to D^*$ per l'ottimo rapporto segnale/fondo nella differenza di massa $M(k\pi\pi) - M(k\pi)$ del decadimento $D^* \to \pi D^0 \to k\pi$.

- D^{*±}µ[∓] (dati 2010, mu6, 3.4 pb⁻¹)
 - misura della sezione d'urto di produzione di b-adroni (paper di prossima circolazione).
- ▶ $D^{\star\pm}\mu^{\mp}$ associati a jet (dati 2010, mu4_L1JXX, 35 pb^{-1}):
 - misura dell'efficienza di b-tagging (conf note in circolazione).
- ▶ *D*^{*±} (dati 2010, MinBias, 1 *nb*⁻¹):
 - misura del rapporto delle sezioni di produzione di b/c (lavori in corso).
- ▶ D^{*±} (dati 2010, JXX, 35 pb⁻¹):
 - misura dell'efficienza di b e c-tagging (lavori in corso).

イロト 人間ト イヨト イヨト

Sezione d'urto differenziale di produzione di *b*-adroni Richieste dell'analisi

 calcolo della sezione d'urto dello stato esclusivo, all'interno della regione cinematica "visibile" (|η_{D*}| < 2.5, |η_μ| < 2.4, p_{T_{D*}} > 4.5 GeV, p_{Tμ} > 6 GeV):

$$\frac{d\sigma(B \to D^{\star}\mu X)}{dp_{T}(D^{\star}\mu)} = \frac{f_{b}N^{D^{\star}\mu}|_{\Delta p_{T}}}{2\epsilon \mathcal{BL}\Delta p_{T}} \quad \frac{d\sigma(B \to D^{\star}\mu X)}{d|\eta|(D^{\star}\mu)} = \frac{f_{b}N^{D^{\star}\mu}|_{\Delta|\eta|}}{2\epsilon \mathcal{BL}\Delta|\eta|}$$

- numero N di coppie $D^{\star}\mu$ ossevate, in bin di $p_{T}/|\eta|$
- frazione f_b proveniente da singolo b, in bin di $p_T/|\eta|$
- efficienza complessiva di ricostruzione e trigger ϵ in bin di $p_T/|\eta|$
- luminosità di ATLAS
- branching ratio totale $\mathcal{B} = B(D^{\star} \rightarrow D^{0}\pi) \cdot B(D^{0} \rightarrow K\pi)$ (valori dal PDG2010)
- $\Delta p_T / \Delta |\eta|$: larghezza dei bin
- fattore 2: $N^{D^{\star}\mu}$ comprende $D^{\star+}\mu^-$ e $D^{\star-}\mu^+$
- unfolding (utilizzando predizioni teoriche NLO) per ottenere sezioni d'urto differenziali in p_T(B) e |η(B)|
- ► correzioni di accettanza e branching ratio $B(b \rightarrow D^* \mu X)$ per ottenere sezioni d'urto differenziali di *b*-adroni

Selezione del campione $D^{\star}\mu$

Dati e trigger:

- ▶ Agosto-Ottobre 2010 (*L*=3.4 pb⁻¹)
- singolo muone con p_T > 6 GeV

selezione sulle tracce:

- ▶ 5 hit sui rivelatori a silicio (almeno uno sui pixel) per K, π , π s, μ
- ▶ $p_T > 1$ GeV per K, π ; $p_T > 250$ MeV per π_s
- ▶ $|\eta| < 2.5 \text{ per } K, \pi, \pi_s$

selezione D^* :

- ▶ $|M(K\pi) M(D_{PDG}^0)| < 40 \text{ MeV}$
- $p_T(D^{\star}) > 4.5$ GeV, $|\eta(D^{\star})| < 2.1$

selezione $D^*\mu$:

- muone combinato
- matching con muoni del trigger
- *p*_T(μ) > 6 GeV, |η(μ)| < 2.4</p>
- ▶ 2.5 GeV $< M(D^*\mu) < 5.4$ GeV

Campione $D^*\mu$ sui dati

 $|\eta_{D^{\star}}| < 2.5, |\eta_{\mu}| < 2.4, \ p_{T_{D^{\star}}} > 4.5 \text{ GeV}, \ p_{T_{\mu}} > 6 \text{ GeV}$

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

Università degli Studi di Genova

Composizione del campione di $D^{\star}\mu$

- $f(c \rightarrow D^{\star}, c \rightarrow \mu) \sim 4\%$ - $f(b \rightarrow D^*\tau, \tau \rightarrow \mu X) \sim 2\%$

-
$$f(b
ightarrow D^{\star}D, D
ightarrow \mu) \sim 1\%$$

Incertezze sistematiche della misura $\sigma(B)$

incertezza legata alla procedura di fit:

- variato il range ΔM di fit del segnale
- diverso modello di parametrizzazione del fondo
- incertezza sulla frazione di segnale proveniente da singolo *b*: variato di un fattore 2 il rapporto b/c su MC (~ 2%)
- incertezza sul ricostruzione di tracce, muoni e trigger, calcolate da ATLAS indipendentemente da questa analisi (~ 8%)
- ► correzioni che tengano in conto differenze dati/MC degli spettri $p_T/\eta(D^*\mu)$ (~ 2%)
- \blacktriangleright correzioni che tengano in conto differenze dati/MC della risoluzione di massa del $D^0~(\sim 1\%)$
- incertezza della luminosità integrata del campione analizzato (~ 3.4%)
- incertezze dei relativi branching ratio ($\sim 7\%$)

(日) (同) (三) (三)

Sezioni d'urto differenziali di $B \rightarrow D^{\star} \mu X$ regione cinematica: $|\eta_{D^{\star}}| < 2.5, |\eta_{\mu}| < 2.4, \ \rho_{T_{D^{\star}}} > 4.5 \ \text{GeV}, \ \rho_{T_{\mu}} > 6 \ \text{GeV}$

dơ(B→ D*μ)/dp_⊤(B) [nb/GeV] data 2010. L ATLAS Work in progress ATLAS Work in progress $d\sigma(B \rightarrow D^*\mu)/d\eta|(B)$ [nb/unit of POWHEG+PYTHIA √s = 7 TeV √s = 7 TeV POWHEG+HERWIG MC@NLO data 2010, L = 3.26 pb⁻¹ POWHEG+PYTHIA POWHEG+HERWIG MC@NLO 30 20 10⁻¹ 10 20 30 40 50 60 70 80 0.5 1.5 2.5 10 p, (B) [GeV] |η| (B)

valore integrato: $\sigma(B \rightarrow D^{\star}\mu X) = 80.2 \pm 2.0|_{stat} + \frac{8.0}{-8.6}|_{syst} \pm 1.2|_{\mathcal{B}} \pm 2.7|_{\mathcal{L}}$ nb

Università degli Studi di Genova

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

Sezioni d'urto differenziali di B

regione cinematica: $|\eta_B| <$ 2.5, $p_{T_B} >$ 9 GeV

Misura dell'efficienza di *b*-tagging con $D^*\mu$ in jet ^{Campione di $D^*\mu$ associato con jet}

- stessi criteri di selezione di base usati per la misura di sezione d'urto
- ▶ candidati $D^{\star}\mu$ associati con un jet con $|\eta| < 2.5$ e $p_T > 20~GeV$
- ▶ $p(D^*\mu)$ proiettato sull'asse del jet nel piano trasverso > 0.6
- selezione di trigger: singolo muone o associazioni jet-muoni (campione esteso a tutti i dati del 2010)

Cross-check dei tagger di vita media

Confronto MC-dati con fondo sottratto (dalla sideband di ΔM)

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

Università degli Studi di Genova

Calcolo dell'efficienza di b-tagging

- fit del numero di candidati D^{*}μ associati a un jet;
- ▶ b-tagging del jet → fit del numero di candidati D* nei jets taggati;

$$\epsilon_{D^*\mu} = \frac{N(D^*\mu)_{b-\text{taggati}}}{N(D^*\mu)}$$

$$\epsilon_{D^*\mu} = \frac{n_b\epsilon_b + n_{cc}\epsilon_{cc} + n_{bb}\epsilon_{bb}}{n_b + n_{cc} + n_{bb}} \quad \epsilon_b = \frac{\epsilon_{D^*\mu}(1 + \frac{n_{cc}}{n_b} + \frac{n_{bb}}{n_b}) - \frac{n_{cc}}{n_b}\epsilon_{cc}}{1 + \frac{n_{bb}}{n_b}\alpha} \quad [\epsilon_{bb} = \alpha\epsilon_b]$$

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

b- e c-tagging calibration, b cross section

Università degli Studi di Genova

Incertezze sistematiche della misura di b-tagging

Incertezze sistematiche della misura:

- variato del 50% il rapporto n_{cc} / n_b
- variato del 100% il valore e_c ottenuto da MC
- variato del 50% il rapporto $n_{b'}/n_b$ e α (assunto 1)
- fit simultaneo: libera la σ del picco D*
- fit simultaneo: libera la forma del fondo

	p _T ∈[20,25] GeV	p _T ∈[25,40] GeV	p _T ∈[40,60] GeV	$p_T \in [60,90] \text{ GeV}$
$\epsilon_{Data} \pm \sigma(\epsilon_{Data})^{stat}$	0.449 ± 0.036	0.593 ± 0.032	0.654 ± 0.047	0.721 ± 0.075
$\sigma(\epsilon_{Data})^{syst}(n_{cc}/n_{bb})$	$^{+0.009}_{-0.009}$	$^{+0.014}_{-0.013}$	$^{+0.016}_{-0.015}$	+0.018 -0.017
$\sigma(\epsilon_{Data})^{syst}(n_{b'}/n_{bb}, \alpha)$	$^{+0.002}_{-0.005}$	+0.002 -0.007	+0.003 -0.008	+0.003 -0.008
$\sigma(\epsilon_{Data})^{syst}(\epsilon_c)$	$^{+0.009}_{-0.009}$	$^{+0.009}_{-0.009}$	$^{+0.009}_{-0.009}$	$^{+0.009}_{-0.009}$
$\sigma(\epsilon_{Data})^{syst}(D^* width)$	+0.012 -0.012	$^{+0.01}_{-0.01}$	$^{+0.011}_{-0.011}$	+0.009 -0.009
$\sigma(\epsilon_{Data})^{syst}(Bkg.param.)$	+0.002 -0.002	+0.007 -0.007	+0.003 -0.003	+0.042 -0.042 -0.042
$\sigma(\epsilon_{Data})^{syst}(total)$	$^{+0.018}_{-0.018}$	+0.021 -0.021	+0.022 -0.022	+0.048 -0.048
$\epsilon_{MC} \pm \sigma(\epsilon_{MC})^{stat}$	0.515 ± 0.023	0.676 ± 0.015	0.687 ± 0.015	0.779 ± 0.012
Data/MC Scale Factor	0.872 ± 0.087	0.877 ± 0.060	0.952 ± 0.078	0.926 ± 0.115

L'incertezza statistica è ancora dominante.

Efficienza di *b*-tagging: risultati e confronto con altri metodi

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

b- e c-tagging calibration, b cross section

Università degli Studi di Genova

Campione D^* : misura della frazione b/c

Perché ?:

- ▶ misura della frazione b/c per riduzione dell'errore sistematico nelle misure effettuate su campioni D^{*}µ (sezione d'urto B e efficienza b-tagging)
- misura del rapporto tra le sezioni d'urto b e c (inclusivo e in jet)
- misura delle efficienze di b e c-tagging (in jet)

Idea di base: separare b e c usando variabili correlate alla lunghezza di volo del D^* :

- diverse possibili variabili: parametro d'impatto trasverso del m_{soft}, parametro d'impatto trasverso del D⁰, lunghezza di volo del D⁰, lunghezza di volo del D^{*}...
- ▶ lo pseudo proper time del *D*⁰ sembra essere il miglior candidato poichè permette di tenere sotto controllo effetti di risoluzione
- primo test sul campione inclusivo di Min. Bias del 2010 ($\sim 1nb^{-1}$)

Campione D^* : misura della frazione b/c (II)

Prima di effettuare il fit su dati è stato verificato su MC che il fit dia una stima unbiased della frazione di D^* provenienti da *b* e dell' (eventuale) extra fattore di risoluzione data/MC.

Entrambe le quantità sono state estratte da fit su campioni MC indipendenti e sono state confrontate con il valore atteso.

DATI

Campione D^* : misura della frazione b/c (III)

MC (b/c = 0.10)

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

b- e c-tagging calibration, b cross section

Università degli Studi di Genova

Campione D^* : misura della frazione b/c (III)

MC (b/c = 0.10)

Discrepanza nelle code dei dati dovuta, almeno in parte, a bins con valore negativo (prodotti dalla sottrazione).

Campione D^* : misura di ϵ_b e ϵ_c

Due approcci possibili.

Efficienza di *b*-tagging su *D** associati a *c*-jets

Si usa il fit descritto in precedenza per stimare la frazione di b e il MC per l'efficienza di b-tagging su b-jets.

Primi risultati sui dati 2010 (periodi E-I, OR dei jet triggers), per il momento prendendo la frazione di b da MC:

Campione D^* : misura di ϵ_b e ϵ_c (II)

Determinazione contemporanea dell'efficienza di *b*-tagging su D^* associati a *b*-jets e *c*-jets

L'idea di base è quella di selezionare due campioni contententi una composizione di *b* significativamente differente. Questo può essere fatto richiedendo un jet *b*-taggato, lontano dal jet contente lo stato esclusivo, e separando il campione completo in due sottocampioni in base alla presenza di questo jet *b*-taggato: campione-1, arricchito in *b*-jet, e campione-2, impoverito in *b*-jet. Una volta selezionati i due campioni, si risolve il seguente sistema:

 $n_1^b = \epsilon_b \cdot b_1 + \epsilon_c \cdot c_1$ $n_2^b = \epsilon_b \cdot b_2 + \epsilon_c \cdot c_2$

dove b_1 , c_1 , b_2 e c_2 sono misurati usando un fit combinato massa/tempo proprio nei due campioni, mentre n_1^b e n_2^b sono il numero di jet *b*-taggati, stimati da un fit basato solo sulla distribuzione di massa.

La soluzione di questo sistema porta ad una misura pulita di ϵ_c ed ϵ_b , quindi alla misura del punto di lavoro del *b*-tagging in termini di efficienza/reiezione.

Stato e prospettive (I)

- ▶ sezione d'urto di produzione di *b* con $D^*\mu$:
 - paper, basato sui dati 2010 (mu6, 3.4 pb⁻¹), di prossima circolazione: unico ostacolo, che stiamo affrontando in questi giorni, un disaccordo dati/MC nella massa M(D^{*}μ) probabilmente causato dall'algoritmo di fit (cascade fitter);
 - non c'è interesse a ripetere la misura con i dati 2011 (trigger);
 - l'analisi potrebbe essere estesa, sui dati 2010, ad altre correlazioni Dµ con lo scopo di misurare le frazioni di frammentazioni in B⁺, B_d, B_s.
 - ► ottima collaborazione con i nostri colleghi dei µ; Elvira Rossi ha ricalcolato per noi le efficienza di EF_mu6.
- \blacktriangleright misura dell'efficienza di *b*-tagging con $D^{\star}\mu$ associati a jet
 - conf note in circolazione (dati 2010)
 - analisi dati 2011 in corso (obiettivo EPS conf)
 - necessario stimare il bias vs la misura semileptonica inclusiva o inclusiva tout court per mediare il risultato con gli altri metodi

Stato e prospettive (II)

- misura del rapporto delle sezioni di produzione di b/c con D^* :
 - lavoro in corso sulle sistematiche del fit;
 - concorrenza con analisi D^{*} nei jets (lowa), diverso metodo di fit.
- ▶ misura dell'efficienza di b e c-tagging con D^* associati a jet
 - fit in comune con l'analisi precedente
 - obiettivo: fornire una prima misura della charm efficiency per EPS

Slide di back-up

Università degli Studi di Genova

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

Distribuzione $M(D^*\mu)$

I dati sono ottenuti per sottrazione del fondo dalle sidebands.

Effetto del "Cascade vertexing"

- ▶ il fit di vertice è fatto con VKal Cascade Fitter che fitta insieme l'intera cascata $B \rightarrow \mu D^* (\rightarrow \pi D^0 (\rightarrow K \pi))$
- il numero di gradi di libertà ritornato dal fit può essere 4 o 5: 4 se il fit riesce a fittare separatamente il D⁰, 5 altrimenti (in questo secondo caso tutte le tracce sono fittate al vertice del B).

Accettanza

Fattore di accettanza α in funzione di p_T e η : conversione da regione cinematica D^*/μ a B

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

Università degli Studi di Genova

Conclusioni

Incertezze statistiche e sistematiche di $\sigma(B)$ Incertezze in funzione dei bin in p_T

error $\setminus p_T$ bin (GeV)	9-12	12-15	15-20	20-30	30-45	45-80		
stat	11.5%	5.2%	3.3%	2.8%	3.7%	6.0%		
$\sigma(D^{\star}\mu X)$ and $\overline{\sigma(B)}$ systematics								
D*µ fit	$^{+1.1}_{-1.6}\%$	$^{+0.4}_{-1.1}\%$	$^{+0.1}_{-1.5}\%$	$^{+0.1}_{-1.8}\%$	$^{+0.2}_{-1.1}\%$	$^{+2.3}_{-0.3}\%$		
f _b	+2.2 %	$^{+2.1}_{-0.8}\%$	$^{+1.8}_{-0.5}\%$	$^{+1.6}_{-0.5}\%$	$^{+1.5}_{-0.7}\%$	+1.7 %		
$trk+\murec$	$^{+9.0}_{-8.1}\%$	$^{+9.0}_{-8.1}\%$	$^{+8.9}_{-8.0}\%$	$^{+8.7}_{-7.9}\%$	$^{+8.6}_{-7.8}\%$	$^{+8.4}_{-7.6}\%$		
μ 6trig	$^{+2.6}_{-2.7}\%$	$^{+2.9}_{-2.9}\%$	$^{+4.5}_{-3.1}\%$	$^{+7.1}_{-3.2}\%$	$^{+9.4}_{-3.1}\%$	$^{+11.7}_{-3.2}\%$		
MC p_T/η reweight	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%		
D ⁰ mass correct	1%	1%	1%	1%	1%	1%		
lumi	3.4%	3.4%	3.4%	3.4%	3.4%	3.4%		
$BR_{D^{\star} \rightarrow D^{0} \pi}$	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%		
$BR_{D^0 \to K\pi}$	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%		
tot syst $\sigma(b o D^{\star} \mu)$	$^{+10.5}_{-9.7}\%$	$^{+10.5}_{-9.6}\%$	$^{+10.9}_{-9.6}\%$	$^{+12.1}_{-9.7}\%$	$^{+13.5}_{-9.4}\%$	$^{+15.2}_{-9.3}\%$		
$\sigma(B)$ only systematics								
$BR_{b\to D^{\star}\mu X}$	7%	7%	7%	7%	7%	7%		
acceptance (α)	$^{+0}_{-10}\%$	$^{+4.6}_{-1.5}\%$	$^{+0}_{-6.8}\%$	$^{+0}_{-1.9}\%$	$^{+2.0}_{-3.6}\%$	$^{+3.5}_{-7.9}\%$		
tot syst $\sigma(b)$	+12.6 %	$^{+13.4}_{-12.0}\%$	$^{+13.0}_{-13.7}\%$	$^{+14.0}_{-12.1}\%$	$^{+15.3}_{-12.3}\%$	$^{+17.1}_{-14.1}\%$		

▲ロ▶ ▲圖▶ ▲ 国▶ ▲ 国▶ → 国 → のへで

Università degli Studi di Genova

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

Incertezze statistiche e sistematiche di $\sigma(B)$ Incertezze in funzione dei bin in η

error $\setminus \eta$ bin	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5			
stat	3.8%	4.1%	5.7%	7.5%	13.5%			
$\sigma(D^{\star}\mu X)$ and $\sigma(B)$ systematics								
$D^{\star}\mu$ fit	$^{+0}_{-1.5}\%$	$^{+0}_{-0.7}\%$	$^{+1.1}_{-0.6}\%$	$^{+0.8}_{-0.3}\%$	$^{+6.4}_{-2.2}\%$			
fb	$^{+1.6}_{-0.5}\%$	$^{+2.0}_{-0.5}\%$	$^{+1.5}_{-0.6}\%$	$^{+1.5}_{-0.6}\%$	$^{+1.3}_{-0.9}\%$			
$trk+\murec$	$^{+7.0}_{-6.5}\%$	$^{+7.2}_{-6.6}\%$	$^{+8.7}_{-7.8}\%$	$^{+11.2}_{-10.0}\%$	$^{+15.8}_{-13.1}\%$			
μ 6trig	$^{+6.9}_{-3.3}\%$	$^{+7.2}_{-3.3}\%$	$^{+5.3}_{-2.8}\%$	$^{+4.9}_{-2.8}\%$	$^{+4.4}_{-2.7}\%$			
MC p_T/η reweight	1.5%	1.5%	1.5%	1.5%	1.5%			
D ⁰ mass correct	1%	1%	1%	1%	1%			
lumi	3.4%	3.4%	3.4%	3.4%	3.4%			
$BR_{D^{\star} \rightarrow D^{0} \pi}$	0.7%	0.7%	0.7%	0.7%	0.7%			
$BR_{D^0 \to K\pi}$	1.3%	1.3%	1.3%	1.3%	1.3%			
tot syst $\sigma(b o D^* \mu)$	$^{+10.8}_{-8.5}\%$	$^{+11.2}_{-8.5}\%$	$^{+11.1}_{-9.3}\%$	$^{+13.0}_{-11.2}\%$	$^{+18.1}_{-14.2}\%$			
$\sigma(B)$ only systematics								
$BR_{b\to D^{\star}\mu X}$	7%	7%	7%	7%	7%			
acceptance (α)	$^{+7.3}_{-7.5}\%$	$^{+7.6}_{-7.8}\%$	$^{+0.4}_{-14}\%$	$^{+1.5}_{-10.3}\%$	$^{+5.8}_{-7.6}\%$			
tot syst $\sigma(b)$	$^{14.8}_{-13.3}\%$	$^{+15.2}_{-13.5}\%$	$^{+13.1}_{-18.2}\%$	$^{+14.8}_{-16.7}\%$	$^{+20.2}_{-17.6}\%$			

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 - のへで

Università degli Studi di Genova

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi