

b- e c-tagging calibration, b cross section

Andrea Coccaro, Andrea Ferretto, Fabrizio Parodi, Leonardo Rossi, Carlo Schiavi

> V ATLAS-Italia Physics Workshop Napoli, 18-19 Maggio 2011

Introduzione

La ricostruzione di mesoni B e D costituisce uno strumento essenziale per la misura delle sezioni d'urto di produzione di b e c e per la calibrazione del flavour tagging su campioni puri.

Si è scelto di usare i campioni di $b \to D^* \mu X$ e $b, c \to D^*$ per l'ottimo rapporto segnale/fondo nella differenza di massa $M(k\pi\pi) - M(k\pi)$ del decadimento $D^* \to \pi D^0 \to k\pi$.

- ▶ $D^{*\pm}\mu^{\mp}$ (dati 2010, mu6, 3.4 pb^{-1})
 - misura della sezione d'urto di produzione di b-adroni (paper di prossima circolazione).
- ▶ $D^{\star\pm}\mu^{\mp}$ associati a jet (dati 2010, mu4_L1JXX, 35 pb^{-1}):
 - misura dell'efficienza di b-tagging (conf note in circolazione).
- ▶ $D^{*\pm}$ (dati 2010, MinBias, 1 nb^{-1}):
 - misura del rapporto delle sezioni di produzione di b/c (lavori in corso).
- $ightharpoonup D^{*\pm}$ (dati 2010, JXX, 35 pb^{-1}):
 - ▶ misura dell'efficienza di *b* e *c*-tagging (lavori in corso).

Sezione d'urto differenziale di produzione di b-adroni

Richieste dell'analisi

calcolo della sezione d'urto dello stato esclusivo, all'interno della regione cinematica "visibile" (|η_{D*}| < 2.5, |η_μ| < 2.4, p_{T_{D*}} > 4.5 GeV, p_{Tμ} > 6 GeV):

$$\frac{d\sigma(B \to D^{\star}\mu X)}{dp_{T}(D^{\star}\mu)} = \frac{f_{b}N^{D^{\star}\mu}|_{\Delta p_{T}}}{2\epsilon\mathcal{B}\mathcal{L}\Delta p_{T}} \qquad \frac{d\sigma(B \to D^{\star}\mu X)}{d|\eta|(D^{\star}\mu)} = \frac{f_{b}N^{D^{\star}\mu}|_{\Delta|\eta|}}{2\epsilon\mathcal{B}\mathcal{L}\Delta|\eta|}$$

- numero N di coppie $D^{\star}\mu$ ossevate, in bin di $p_T/|\eta|$
- frazione f_b proveniente da singolo b, in bin di $p_T/|\eta|$
- efficienza complessiva di ricostruzione e trigger ϵ in bin di $p_T/|\eta|$
- Iuminosità di ATLAS
- branching ratio totale $\mathcal{B}=\mathcal{B}(D^\star\to D^0\pi)\cdot\mathcal{B}(D^0\to K\pi)$ (valori dal PDG2010)
- $\Delta p_T/\Delta |\eta|$: larghezza dei bin
- fattore 2: $N^{D^{\star}\mu}$ comprende $D^{\star+}\mu^-$ e $D^{\star-}\mu^+$
- unfolding (utilizzando predizioni teoriche NLO) per ottenere sezioni d'urto differenziali in $p_T(B)$ e $|\eta(B)|$
- correzioni di accettanza e branching ratio B(b → D*μX) per ottenere sezioni d'urto differenziali di b-adroni

Selezione del campione $D^{\star}\mu$

Dati e trigger:

- Agosto-Ottobre 2010 (\mathcal{L} =3.4 pb⁻¹)
- singolo muone con p_T > 6 GeV

selezione sulle tracce:

- ▶ 5 hit sui rivelatori a silicio (almeno uno sui pixel) per K, π , π_s , μ
- $ho_T > 1$ GeV per K, π ; $p_T > 250$ MeV per π_s
- $ightharpoonup |\eta| < 2.5 \ {
 m per} \ K, \pi, \pi_s$

selezione D^* :

- $ightharpoonup |M(K\pi) M(D^0_{PDG})| < 40 \text{ MeV}$
- $p_T(D^*) > 4.5 \text{ GeV}, |\eta(D^*)| < 2.1$

selezione $D^*\mu$:

- muone combinato
- matching con muoni del trigger
- $p_T(\mu) > 6 \text{ GeV}, |\eta(\mu)| < 2.4$
- 2.5 GeV $< M(D^*\mu) < 5.4$ GeV

Campione $D^{\star}\mu$ sui dati

 $|\eta_{D^{\star}}| < 2.5, |\eta_{\mu}| < 2.4$, $p_{T_{D^{\star}}} > 4.5$ GeV, $p_{T_{\mu}} > 6$ GeV

Composizione del campione di $D^{\star}\mu$

-
$$f(b \to D^*\mu) \sim 93\%$$

- $f(c \to D^*, c \to \mu) \sim 4\%$
- $f(b \to D^*\tau, \tau \to \mu X) \sim 2\%$
- $f(b \to D^*D, D \to \mu) \sim 1\%$

Incertezze sistematiche della misura $\sigma(B)$

- incertezza legata alla procedura di fit:
 - variato il range ΔM di fit del segnale
 - diverso modello di parametrizzazione del fondo
- incertezza sulla frazione di segnale proveniente da singolo b: variato di un fattore 2 il rapporto b/c su MC (\sim 2%)
- incertezza sul ricostruzione di tracce, muoni e trigger, calcolate da ATLAS indipendentemente da questa analisi (~ 8%)
- correzioni che tengano in conto differenze dati/MC degli spettri $p_T/\eta(D^*\mu)$ ($\sim 2\%$)
- correzioni che tengano in conto differenze dati/MC della risoluzione di massa del $D^0~(\sim 1\%)$
- lacktriangle incertezza della luminosità integrata del campione analizzato ($\sim 3.4\%$)
- incertezze dei relativi branching ratio ($\sim 7\%$)

Sezioni d'urto differenziali di $B \to D^* \mu X$

regione cinematica: $|\eta_{D^{\star}}| < 2.5, |\eta_{\mu}| < 2.4, p_{T_{D^{\star}}} > 4.5$ GeV, $p_{T_{\mu}} > 6$ GeV

valore integrato: $\sigma(B \to D^\star \mu X) = 80.2 \pm 2.0|_{stat} ^{+8.0}_{-8.6}|_{syst} \pm 1.2|_{\mathcal{B}} \pm 2.7|_{\mathcal{L}}$ nb

Sezioni d'urto differenziali di B

regione cinematica: $|\eta_B| < 2.5, p_{T_B} > 9 \text{ GeV}$

valore integrato: $\sigma(B) = 33.9 \pm 1.0|_{stat_4.3}|_{syst} \pm 2.5|_{\mathcal{B}} \pm 1.2|_{\mathcal{L}} \ \mu b$

Estrapolando all'intero spazio delle fasi

$$\sigma(B)_{\rm extrap} = \gamma \sigma(B) = 373 \pm 11|_{\rm stat} ^{+37}_{-47}|_{\rm syst} \pm 28|_{\mathcal{B}} \pm 13|_{\mathcal{L}_{-41}}^{+37}|_{\gamma} ~~\mu{\rm b}$$

LHCb (arXiv:1009.2731v1):

$$\sigma(pp \to b\bar{b}X) = 284 \pm 20|_{stat} \pm 49|_{syst} \mu b$$

Misura dell'efficienza di b-tagging con $D^*\mu$ in jet

Campione di $D^*\mu$ associato con jet

- stessi criteri di selezione di base usati per la misura di sezione d'urto
- lacktriangle candidati $D^{\star}\mu$ associati con un jet con $|\eta| <$ 2.5 e $p_T >$ 20 GeV
- $p(D^*\mu)$ proiettato sull'asse del jet nel piano trasverso > 0.6
- selezione di trigger: singolo muone o associazioni jet-muoni (campione esteso a tutti i dati del 2010)

Cross-check dei tagger di vita media

Confronto MC-dati con fondo sottratto (dalla sideband di ΔM)

Calcolo dell'efficienza di b-tagging

- fit del numero di candidati $D^{\star}\mu$ associati a un jet;
- ▶ b-tagging del jet → fit del numero di candidati D^* nei jets taggati;

$$\epsilon_{D^*\mu} = rac{\mathit{N}(D^*\mu)_{b ext{-taggati}}}{\mathit{N}(D^*\mu)}$$

$$\epsilon_{D^*\mu} = \frac{n_b \epsilon_b + n_{cc} \epsilon_{cc} + n_{bb} \epsilon_b}{n_b + n_{cc} + n_{bb}}$$

$$\epsilon_{D^*\mu} = \frac{n_b \epsilon_b + n_{cc} \epsilon_{cc} + n_{bb} \epsilon_{bb}}{n_b + n_{cc} + n_{bb}} \quad \epsilon_b = \frac{\epsilon_{D^*\mu} \left(1 + \frac{n_{cc}}{n_b} + \frac{n_{bb}}{n_b}\right) - \frac{n_{cc}}{n_b} \epsilon_{cc}}{1 + \frac{n_{bb}}{n_b} \alpha}$$

$$[\epsilon_{bb} = \alpha \epsilon_b]$$

Incertezze sistematiche della misura di b-tagging

Incertezze sistematiche della misura:

- ▶ variato del 50% il rapporto n_{cc}/n_b
- ightharpoonup variato del 100% il valore ϵ_c ottenuto da MC
- variato del 50% il rapporto $n_{b'}/n_b$ e α (assunto 1)
- ightharpoonup fit simultaneo: libera la σ del picco D^*
- fit simultaneo: libera la forma del fondo

	$p_T \in [20,25] \text{ GeV}$	$p_T \in [25,40] \text{ GeV}$	<i>p</i> _T ∈[40,60] GeV	$p_T \in [60,90] \text{ GeV}$
$\epsilon_{Data} \pm \sigma (\epsilon_{Data})^{stat}$	0.449 ± 0.036	0.593 ± 0.032	0.654 ± 0.047	0.721 ± 0.075
$\sigma(\epsilon_{Data})^{syst}(n_{cc}/n_{bb})$	+0.009	+0.014	+0.016	+0.018
	-0.009	-0.013	-0.015	-0.017
$\sigma(\epsilon_{Data})^{syst}(n_{h'}/n_{bb}, \alpha)$	+0.002	+0.002	+0.003	+0.003
	-0.005	-0.007	-0.008	-0.008
$\sigma(\epsilon_{Data})^{syst}(\epsilon_{c})$	+0.009	+0.009	+0.009	+0.009
	-0.009	-0.009	-0.009	-0.009
$\sigma(\epsilon_{Data})^{syst}(D^* width)$	+0.012	+0.01	+0.011	+0.009
	-0.012	-0.01	-0.011	-0.009
$\sigma(\epsilon_{Data})^{syst}(Bkg.param.)$	+0.002	+0.007	+0.003	+0.042
	-0.002	-0.007	-0.003	-0.042 -0.042
$\sigma(\epsilon_{Data})^{syst}(total)$	+0.018	+0.021	+0.022	+0.048
	-0.018	-0.021	-0.022	-0.048
$\epsilon_{MC} \pm \sigma(\epsilon_{MC})^{stat}$	0.515 ± 0.023	0.676 ± 0.015	0.687 ± 0.015	0.779 ± 0.012
Data/MC Scale Factor	0.872 ± 0.087	0.877 ± 0.060	0.952 ± 0.078	0.926 ± 0.115

L'incertezza statistica è ancora dominante.

Efficienza di *b*-tagging: risultati e confronto con altri metodi

SV0 tagger a 50% di efficienza

$$b$$
 – tagging eff. da $D^*\mu$

ATLAS scale factors

Campione D^* : misura della frazione b/c

Perché ?:

b- e c-tagging calibration, b cross section

- misura della frazione b/c per riduzione dell'errore sistematico nelle misure effettuate su campioni $D^*\mu$ (sezione d'urto B e efficienza b-tagging)
- misura del rapporto tra le sezioni d'urto b e c (inclusivo e in jet)
- ▶ misura delle efficienze di b e c−tagging (in jet)

ldea di base: separare b e c usando variabili correlate alla lunghezza di volo del D^* :

- b diverse possibili variabili: parametro d'impatto trasverso del π_{soft} , parametro d'impatto trasverso del D^0 , lunghezza di volo del D^0 , lunghezza di volo del D^* ...
- ▶ lo pseudo proper time del D⁰ sembra essere il miglior candidato poichè permette di tenere sotto controllo effetti di risoluzione
- lacktriangle primo test sul campione inclusivo di Min. Bias del 2010 ($\sim 1 nb^{-1}$)

Campione D^* : misura della frazione b/c (II)

Prima di effettuare il fit su dati è stato verificato su MC che il fit dia una stima unbiased della frazione di D^* provenienti da b e dell' (eventuale) extra fattore di risoluzione data/MC.

Entrambe le quantità sono state estratte da fit su campioni MC indipendenti e sono state confrontate con il valore atteso.

Campione D^* : misura della frazione b/c (III)

Campione D^* : misura della frazione b/c (III)

Discrepanza nelle code dei dati dovuta, almeno in parte, a bins con valore negativo (prodotti dalla sottrazione).

Campione D^* : misura di ϵ_b e ϵ_c

Due approcci possibili.

Efficienza di b-tagging su D^* associati a c-jets

Si usa il fit descritto in precedenza per stimare la frazione di b e il MC per l'efficienza di b-tagging su b-jets.

Primi risultati sui dati 2010 (periodi E-I, OR dei jet triggers), per il momento prendendo la frazione di b da MC:

Campione D^* : misura di ϵ_b e ϵ_c (II)

Determinazione contemporanea dell'efficienza di b-tagging su D^* associati a b-jets e c-jets

L'idea di base è quella di selezionare due campioni contententi una composizione di *b* significativamente differente. Questo può essere fatto richiedendo un jet *b*-taggato, lontano dal jet contente lo stato esclusivo, e separando il campione completo in due sottocampioni in base alla presenza di questo jet *b*-taggato: campione-1, arricchito in *b*-jet, e campione-2, impoverito in *b*-jet. Una volta selezionati i due campioni, si risolve il seguente sistema:

$$n_1^b = \epsilon_b \cdot b_1 + \epsilon_c \cdot c_1$$

$$n_2^b = \epsilon_b \cdot b_2 + \epsilon_c \cdot c_2$$

dove b_1 , c_1 , b_2 e c_2 sono misurati usando un fit combinato massa/tempo proprio nei due campioni, mentre n_1^b e n_2^b sono il numero di jet b-taggati, stimati da un fit basato solo sulla distribuzione di massa.

La soluzione di questo sistema porta ad una misura pulita di ϵ_c ed ϵ_b , quindi alla misura del punto di lavoro del b-tagging in termini di efficienza/rejezione.

200

Stato e prospettive (I)

- ▶ sezione d'urto di produzione di b con $D^*\mu$:
 - ▶ paper, basato sui dati 2010 (mu6, 3.4 pb^{-1}), di prossima circolazione: unico ostacolo, che stiamo affrontando in questi giorni, un disaccordo dati/MC nella massa $M(D^*\mu)$ probabilmente causato dall'algoritmo di fit (cascade fitter);
 - non c'è interesse a ripetere la misura con i dati 2011 (trigger);
 - l'analisi potrebbe essere estesa, sui dati 2010, ad altre correlazioni $D\mu$ con lo scopo di misurare le frazioni di frammentazioni in B^+, B_d, B_s .
 - ottima collaborazione con i nostri colleghi dei μ ; Elvira Rossi ha ricalcolato per noi le efficienza di EF_mu6.
- lacktriangle misura dell'efficienza di b-tagging con $D^*\mu$ associati a jet
 - conf note in circolazione (dati 2010)
 - analisi dati 2011 in corso (obiettivo EPS conf)
 - necessario stimare il bias vs la misura semileptonica inclusiva o inclusiva tout court per mediare il risultato con gli altri metodi

Stato e prospettive (II)

- ▶ misura del rapporto delle sezioni di produzione di b/c con D^* :
 - lavoro in corso sulle sistematiche del fit;
 - ightharpoonup concorrenza con analisi D^* nei jets (lowa), diverso metodo di fit.
- lacktriangle misura dell'efficienza di b e c-tagging con D^* associati a jet
 - fit in comune con l'analisi precedente
 - obiettivo: fornire una prima misura della charm efficiency per EPS

Slide di back-up

Distribuzione $M(D^*\mu)$

I dati sono ottenuti per sottrazione del fondo dalle sidebands.

Effetto del "Cascade vertexing"

- ▶ il fit di vertice è fatto con VKal Cascade Fitter che fitta insieme l'intera cascata $B \to \mu D^* (\to \pi D^0 (\to K\pi))$
- il numero di gradi di libertà ritornato dal fit può essere 4 o 5: 4 se il fit riesce a fittare separatamente il D⁰, 5 altrimenti (in questo secondo caso tutte le tracce sono fittate al vertice del B).

Accettanza

Fattore di accettanza lpha in funzione di p_T e η : conversione da regione cinematica D^\star/μ a B

Incertezze statistiche e sistematiche di $\sigma(B)$

Incertezze in funzione dei bin in p_T

error $\setminus p_T$ bin (GeV)	9-12	12-15	15-20	20-30	30-45	45-80		
stat	11.5%	5.2%	3.3%	2.8%	3.7%	6.0%		
$\sigma(D^{\star}\mu X)$ and $\sigma(B)$ systematics								
D* μ fit	+1.1 % -1.6 % +2.2 % -1.3 %	+0.4 % -1.1 %	$^{+0.1}_{-1.5}\%$	+0.1 % -1.8 %	+0.2 % -1.1 %	+2.3 % -0.3 %		
f_b	+2.2 %	+2.1 % -0.8%	+1.8 % -0.5%	+1.6 % -0.5 %	+1.5 % -0.7%	+1.7%		
$trk + \mu rec$	+9.0 %	+9.0 % -8.1 %	+8.9 %	+8.7 % -7.9 %	+8.6 %	+8.4 % -7.6 % +11.7% -3.2		
μ 6trig	+2.6 % -2.7 %	+2.9 % -2.9 %	+4.5 % -3.1 %	+7.1 % -3.2 %	+9.4 % -3.1 %	+11.7% -3.2%		
MC p_T/η reweight	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%		
D^0 mass correct	1%	1%	1%	1%	1%	1%		
lumi	3.4%	3.4%	3.4%	3.4%	3.4%	3.4%		
$BR_{D^* \to D^0 \pi}$	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%		
$BR_{D^0 \to K\pi}$	1.3%	1.3%	1.3%	1.3%	1.3%	1.3%		
tot syst $\sigma(b \to D^*\mu)$	$^{+10.5}_{-9.7}\%$	+10.5 % -9.6	+10.9% -9.6	+12.1% -9.7%	+13.5% -9.4	+15.2% -9.3		
$\sigma(B)$ only systematics								
$BR_{b \to D^* \mu X}$	7%	7%	7%	7%	7%	7%		
acceptance $(lpha)$	+0 -10%	+4.6 % -1.5 %	+0 -6.8%	$^{+0}_{-1.9}\%$	+2.0 % -3.6 %	+3.5 % -7.9 %		
tot syst $\sigma(b)$	+12.6 % -15.6 %	+13.4 % -12.0 %	+13.0 % -13.7 %	+14.0 % -12.1 %	+15.3 % -12.3 %	+17.1 % -14.1 %		

Incertezze statistiche e sistematiche di $\sigma(B)$

Incertezze in funzione dei bin in η

error $\setminus \eta$ bin	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5			
stat	3.8%	4.1%	5.7%	7.5%	13.5%			
$\sigma(D^{\star}\mu X)$ and $\sigma(B)$ systematics								
$D^*\mu$ fit	+0 -1.5%	+0 -0.7%	+1.1 % -0.6%	+0.8 % -0.3 %	+6.4 % -2.2 %			
f _b	-0.5%	+2.0 % -0.5%	$^{+1.5}_{-0.6}\%$	+1.5 % -0.6%	+1.3 %			
$trk + \mu rec$	+7.0 % -6.5 %	+7.2 % -6.6 %	+8.7 % -7.8 %	+11.2 % -10.0 %	+15.8 %			
μ 6trig	+6.9 % -3.3 %	+7.2 % -3.3 %	+5.3 % -2.8 %	+4.9 % -2.8 %	+4.4 % -2.7 %			
MC p_T/η reweight	1.5%	1.5%	1.5%	1.5%	1.5%			
D ⁰ mass correct	1%	1%	1%	1%	1%			
lumi	3.4%	3.4%	3.4%	3.4%	3.4%			
$BR_{D^* \to D^0 \pi}$	0.7%	0.7%	0.7%	0.7%	0.7%			
$BR_{D^0 \to K\pi}$	1.3%	1.3%	1.3%	1.3%	1.3%			
tot syst $\sigma(b \to D^*\mu)$	+10.8% -8.5%	+11.2% -8.5	+11.1% -9.3	$^{+13.0}_{-11.2}\%$	+18.1 % -14.2 %			
$\sigma(B)$ only systematics								
$BR_{b \to D^* \mu X}$	7%	7%	7%	7%	7%			
acceptance (α)	+7.3 % -7.5 %	+7.6 % -7.8 %	+0.4% -14%	$^{+1.5}_{-10.3}\%$	+5.8 % -7.6 %			
tot syst $\sigma(b)$	14.8 %	+15.2 % -13.5 %	+13.1 % -18.2 %	+14.8 % -16.7 %	+20.2 % -17.6 %			