B PHYSICS

F.Conventi

V Atlas Italia Physics Workshop Napoli 18-19 Maggio 2011

ATLAS B Physics subgroup organization

Analisi dati 2010

Publications:

• Measurement of the differential cross-sections of inclusive, prompt and non-prompt J/ ψ production in proton-proton collisions at $\sqrt{s} = 7$ TeV

Submitted to Nuclear Physics B (15 April 2011)

 \circ Measurement of the centrality dependence of J/ ψ yields and observation of Z production in lead-lead collisions with the ATLAS detector at the LHC **Phys Lett. B697 (2011) 294-312**

CONF notes:

D^{\ast} mesons reconstruction in pp collisions at \sqrt{s} = 7 TeV	0.37nb ⁻¹	ATLAS-CONF-2010-034
First observation of the J/psi->mumu resonance	6.4 nb⁻	ATLAS-CONF-2010-045
Measurement of the J/ ψ -> μ μ differential cross section and fraction from B-decays	19.5nb ⁻¹	ATLAS-CONF-2010-062
Observation of the B± meson in the decay B± \rightarrow J/ ψ (μ + μ -)K±	3.4pb⁻	ATLAS-CONF-2010-098
Measurement of D^* and D^+ meson production cross sections in	1.1nb ⁻	ATLAS-CONF-2011-017
Observation of the B ⁰ _d and B ⁰ _s mesons in the decays B ⁰ _d \rightarrow J/ ψ K ^{0*} and B ⁰ _s \rightarrow J/ ψ ϕ	40pb ⁻¹	ATLAS-CONF-2011-050
A measurement of the ATLAS muon reconstruction and trigger efficiency using J/ ψ decays	40pb ⁻¹	ATLAS-CONF-2011-021

Alcuni plot dalle note 2010

Attività in corso 2011

$\mathbf{B} \rightarrow \mathbf{J}/\psi + \mathbf{X}$

○ B average lifetime ○ B[±]→J/ψ K[±] cross section ○ B_d→J/ψ K^{*} and Bs→J/ψ φ ○ B_d→J/ψ Ks ○ Λ_b→J/ψ Λ ○ bb→J/ψ μ angular correlations

Onia

- $_{\odot}$ J/ ψ cross-section(s) and B-fraction [Submitted]
- Upsilon fiducial cross-section [In collab. review]
- \circ Upsilon inclusive cross-section + U(nS) ratios
- \circ X c->J/ ψ gamma [calo+conversions]
- \circ J/ ψ (2S)/J/ ψ cross-section ratio wrt pT/y
- \circ J/ ψ spin-alignment measurement + total xsection
- \circ ψ (2S), X(3872) ->J/ψππ
- \circ Double J/ ψ production studies
- \circ J/ ψ in pp @ 2.76 TeV

Hadronic B decays

• Inclusive D* cross section ATLAS-CONF-2011-017 • b/c with D(*) μ final states ATLAS-COM-PHYS-2011-179 • Separation of b/c contributions • Estimation of fake muon rates (also MCP) • Tracking efficiency with D⁰->K⁻π⁺ / D⁰->K⁻π⁺π⁺π⁻ (also tracking group) • B_s->D_sπ and B_s->D_s μ X • Search for η_c ->K_s⁰K⁺π⁻

Rare decays

Updated reach on $B_s \rightarrow \mu \ \mu \parallel$

Attività in corso 2011: Atlas-Italia

Misura di rilievo per lo studio della ricostruzione delle tracce e dei vertici Precede le misure di lifetime "esclusive"

Obiettivo della misura è
$$au=rac{L_{xy}m^B}{p_T^B}$$
 ma viene misurato $au=rac{L_{xy}m^{J/\Psi}}{p_T^{J/\Psi}}$

Per passare da una quantità all'altra viene calcolato da MC il fattore K di correzione:

$$k = rac{(eta \gamma)_T^B}{(eta \gamma)_T^{J/\Psi}}$$

E' stata applicata una procedura di reweighting del MC sui dati di BaBar al fine di riprodurre lo spettro di p* atteso.

 Dati Babar riccoretti per effetti di efficienza e accettanza

$$\Box$$
 Campione MC di B[±] e B⁰

Misura di rilievo per lo studio della ricostruzione delle tracce e dei vertici Precede le misure di lifetime "esclusive"

Obiettivo della misura è
$$\, au = rac{L_{xy}m^B}{p_T^B} \,$$
 ma viene misurato $\, au = rac{L_{xy}m^{J/\Psi}}{p_T^{J/\Psi}}$

Per passare da una quantità all'altra viene calcolato da MC il fattore K di correzione:

$$k = rac{(eta \gamma)_T^B}{(eta \gamma)_T^{J/\Psi}}$$

E' stata applicata una procedura di reweighting del MC sui dati di BaBar al fine di riprodurre lo spettro di p* atteso.

Dati Babar riccoretti per effetti di efficienza e accettanza

$$\Box$$
 Campione MC di B[±] e B⁰

Unbinned maximum likelihood fit doppio nel range [mean - 10σ , mean + 10σ] intorno al picco della J/ ψ

Pseudo-Proper Time Model

Signal: Delta function plus exponential convolved with a gaussian with per-event error

Mass Model

Signal: Crystalball function with a per-event error **Background:** Chebichev 1st order polynomial

Two lifetime components: • prompt: ct = 0 • non-prompt: ct > 0

10-1 k factor correction: Si applica alla sola componente non-prompt!! Convoluzione della PDF per il fattore k con la non-prompt component componente non-prompt 10-3 prompt $\int dk \, H(k) \cdot e^{\frac{-ct^* \cdot K}{\tau}} \otimes Gauss(ct^*, \sigma(ct^*))$ component 10-4 -10 -5 10 15 20 pseudoproper time (ps)

p⊤(μ₁) > 6 GeV && p⊤(μ₂) > 6 GeV η(μ₁) <1.05 && η(μ₂) < 1.05

Validazione procedura di fit sul MC: bb \rightarrow J/ ψ X mixed with pp \rightarrow (direct)J/ ψ X

Complete signal sample: ο true lifetime: τ_{truth}(B) = 1.53 ps ο Lifetime from fit: τ_{fit}(B) = 1.53 ± 0.02 ps

Background: ->(dalle sidebands)

Symmetric positive and negative exponentials plus a positive exponential all convoluted with a gaussian with per-event error Pseudo-Proper Time Error PDFs Models Built using templates

B-Physics group approval within one or two weeks A Conf-Note is being written to go public fast

B Inclusive Lifetime

Polarizzazione J/ ψ

Modelli teorici recenti mostrano un buon accordo nella descrizione della sezione d'urto differenziale...

If J/ψ has $J_z = +-1$ is said transverse polarized

Polarizzazione J/ ψ

positive lepton direction

LHC

θ wrt a chosen polarization axis (z)

o wrt the production plane (xz)

Polarizzazione misurata a partire dalla distribuzione angolare delle particelle provenienti dal decadimento della J/ ψ .

quarkonium

rest frame

plane

Nel sistema di riferimento in cui la J/ ψ è a riposo si ha:

 J/ψ unpolarized: J/w production □ spherically symmetric l⁺ angular distribution

> J/ψ polarized: □ anysotropic l⁺ angular distribution

Asse di polarizzazione

 J/ψ direction in hadron $(h_1 + h_2)$ CM frame helicity (HX)

Gottfried-Jackson (GJ) direction of h_1 or h_2 in quarkonium rest frame

bisector between h_1 and $(-)h_2$ directions in **Collins-Soper (CS)** quarkonium rest frame \rightarrow ~ direction of relative momentum of colliding partons

Polarizzazione J/ ψ

□ La distribuzione angolare dileptonica dipende da 3 parametri

$$W(\cos\theta',\varphi') = \frac{3}{4\pi(3+\lambda'_{\theta})}(1+\lambda'_{\theta}\cos^2\theta'+\lambda'_{\varphi}\sin^2\theta'\cos2\varphi'+\lambda'_{\theta\varphi}\sin2\theta'\cos\varphi')$$

Diversi metodi implementati per estrarre $\lambda_{\theta} \lambda_{\omega} e \lambda_{\theta} a_{\omega}$

- Fit bidimensionale o proiezione monodimensionale
- Asimmetria

sidebands

Per ogni bin pT-y si effettua un fit della massa invariante della J/ ψ ripesato per l'efficienza

Polarizzazione J/ ψ : stato e prospettive

Risultati preliminari (dati 2010)

Deviazioni dal valore previsto dal MS \rightarrow indicazione nuova fisica oltre MS (principalmente Minimum Flavor Violating models poichè limite sperimentale O(MS)

Limite attuale PDG: <4.7x10⁻⁸

95% CL Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

$B_s \rightarrow \mu \mu$: Strategia di analisi

Rare decays workshop: https://indico.cern.ch/conferenceDisplay.py?ovw=True&confId=132275

Misura del BR rispetto ad un canale di riferimento ben noto in modo da evitare misura assoluta di sezione d'urto. Inoltre si ottiene una cancellazione di alcune sistematiche.

Canale di riferimento: $B^+ \rightarrow J/\psi k^+$

$$\mathscr{B}(B_{s} \rightarrow \mu^{+}\mu^{-}) = \frac{N_{B_{s}}}{N_{B^{+}}} \frac{\alpha_{B^{+}}}{\alpha_{B_{s}}} \frac{\varepsilon_{B^{+}}}{\varepsilon_{B_{s}}} \frac{1}{\varepsilon_{N}} \frac{f_{u}}{f_{s}} \mathscr{B}(B^{+} \rightarrow J/\psi K^{+}) \cdot \mathscr{B}(J/\psi \rightarrow \mu^{+}\mu^{-})$$

$$\overset{\text{Our reference:}}{\text{Pros:}}$$

$$\overset{\text{Ratio of } b \rightarrow B^{+} \text{ to } b \rightarrow B_{s}$$

$$\overset{\text{Ratio of } b \rightarrow B^{+} \text{ to } b \rightarrow B_{s}$$

$$\overset{\text{Final signal selection efficiency}}{\text{Final signal selection efficiency}} \qquad \overset{\text{Our reference:}}{\text{Higher statistics (BR=5.98E-5)}}$$

Very clean experimental signature:

□ Final state fully reconstructed, $M_{\mu \mu} = M(B_S)$ □ Long B_S lifetime (c $\tau = 483 \ \mu$ m) → large $\lambda = cL_T$ $M_{\mu \mu}/P_T(\mu \mu)$ □ L_T and $P_T(\mu \mu)$ ~collinear ->small Pointing Angle

.....but the main challenge is to estimate the background!!

B_s→µµ: Strategia di analisi

Ntuple di gruppo rare-decays :

(https://twiki.cern.ch/twiki/bin/view/AtlasProtected/BPhysicsWorkingGroupDataRare)

Le attività del gruppo consitono principalmente:

Studio delle efficienze di trigger per Bs→µµ. più in generale studio delle efficienze per i trigger dimuonici (cfr talk di A. Ventura)

MC re-weighting technique Misura/limite al BR:

- studio sistematiche per i tagli di isolamento sul Bs
- validazione variabili likelihood per il
- reference channel (data vs MC)
- Definizione template distribuzioni di fondo (dalle sidebands)
- Definizione template per il segnale (dal MC)

B_s→µµ: Strategia di analisi

Ntuple di gruppo rare-decays :

(https://twiki.cern.ch/twiki/bin/view/AtlasProtected/BPhysicsWorkingGroupDataRare)

Le attività del gruppo consitono principalmente:

Studio delle efficienze di trigger per Bs→µµ. più in generale studio delle efficienze per i trigger dimuonici (cfr talk di A. Ventura)

□ MC re-weighting technique

Reference channel:

Re-weighting dal canale $B \rightarrow J/\psi(\mu \mu)K$ (2010 data) \rightarrow re-weight of the $B^+ \rightarrow J/\psi(\mu \mu)K^+$ (MC)

B⁺ yield

B_s→µµ: Strategia di analisi

Ntuple di gruppo rare-decays :

(https://twiki.cern.ch/twiki/bin/view/AtlasProtected/BPhysicsWorkingGroupDataRare)

Le attività del gruppo consitono principalmente:

Studio delle efficienze di trigger per Bs→µµ. più in generale studio delle efficienze per i trigger dimuonici (cfr talk di A. Ventura)

□ MC re-weighting technique

Reference channel:

Re-weighting dal canale $B \rightarrow J/\psi(\mu \mu)K$ (2010 data) \rightarrow re-weight of the $B^+ \rightarrow J/\psi(\mu \mu)K^+$ (MC)

B₅→µµ: Sviluppi futuri

Produzione di una sensitivity curve (SES) in 2 settimane

Ottimizzazione delle variabili di selezione
 > Isolamento, pointing angle, massa invariante,
 L_{xy}
 Limite al BR basato sulla statistica 2010-2011
 entro 1 mese (contributo studio delle sistematiche)
 Fine tuning dell'analisi (entro sei mesi).

BR atteso (limite) \approx 4-6* 10(⁻⁸)

Limite attuale PDG: <4.7x10⁻⁸

B production cross section with $D^{*\pm} \mu^{\mp} X$ final states

Articolo in preparazione: http://cdsweb.cern.ch/record/1330662

Dati ATLAS 2010 periodi E-G (L= 3.4 pb^{-1})

Perché lo stato finale $D^* \mu X$?

- Branching ratio complessivo sufficientemente elevato
- b $\rightarrow D^* \mu X (2.75\%)$
- Facilmente triggerabile (singolo muone)
- Mesone D* facile da ricostruire (3 tracce ID, cinematica particolare)
- Eccellente purezza del campione (basse contaminazioni non provenienti da singolo b)

Ulteriori informazioni nel talk "b- e c-tagging, b cross section" di F. PARODI (GE)

Sezione d'urto differenziale $B \rightarrow D^* \mu X$

Sezione d'urto differenziale del B

La banda gialla rappresenta le incertezze teoriche delle predizioni. I dati sono presentati con l'errore statistico in nero ed errore statistico + sistematico in rosso.

Entro la regione cinematica la sezione d'urto integrata è:

 $\sigma(pp \rightarrow BX) = 33.9 \pm 1.0|_{stat} + 3.4|_{syst} \pm 2.5|_{B} \pm 1.2|_{L} \ \mu b$

Risultati CMS (arXiv:1104.2892, arXiv:1101.0131)

 $\begin{aligned} \sigma(pp \to B^0 X) &= 33.2 \pm 2.5|_{stat} \pm 3.5|_{syst} \ \mu b_{(p_T(B) > 5 GeV, |y(B)| < 2.2)} \\ \sigma(pp \to B^+ X) &= 28.1 \pm 2.4|_{stat} \pm 2.0|_{syst} \pm 3.1|_{\mathcal{L}} \ \mu b_{(p_T(B) > 5 GeV, |y(B)| < 2.4)} \end{aligned}$

InsituMuonPerformace JPSI T&P

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/JpsiMuMuExtraInfo

```
Efficienze di ricostruzione per i <u>muoni di basso</u>
<u>pT:</u>
```

```
cfr. ATL-COM-PHYS-2011-082
```

Attività svolta nel "Low-pT performance group": "Measurement of the ATLAS muon reconstruction and trigger efficiency using J/Ψ decays" - ATLAS-CONF-2011-021 (3pb[^]-1)

□ Il tool di analisi sviluppato è stato utilizzato per il reprocessing dei dati 2010 con rel 16.6.x.y ed è il tool ufficiale ATLAS per lo studio delle efficeinze di ricostruzione con i dati 2011

Efficienza di ricostruzione è ottenuta dal rapporto tra il numero di eventi sotto al picco nella distribuzione dei "matched probe" ed il numero totale di eventi. Applicato un χ^2 fit simultaneo.

InsituMuonPerformace JPSI T&P

Conclusioni

- □ Focus delle primi analisi del 2010 su J/ ψ (misura sezione d'urto di produzione, calibrazione, performance ricostruzione e del trigger)
- Evoluzione nelle analisi in corso nel 2011 in linea con il programma previsto della b-phys (misure di lifetime, decadimenti esclusivi, misure di sezione d'urto, decadimenti rari)
- Contributo dei gruppi italiani in tutti i sottogruppi di analisi per il 2011
- Attività legate allo studio delle performance del trigger ed alla ricostruzione confermate per il 2011