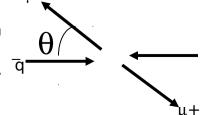
Forward-Backward asymmetry measurement in $pp \rightarrow Z/\gamma^* + X \rightarrow \mu^+\mu^- + X$ events with 236 pb⁻¹

Z → μμ forward-backward asymmetry

- The presence of both vector and axial-vector coupling of the quarks and leptons to the γ*/Z boson gives rise to an asymmetry in the polar emission of muons.
 - Allow measurement of the effective weak mixing angle
- The F/B asymmetry measurement can be extended to higher invariant masses in Drell-Yan spectrum
 - Possible observation of new physics scenarios: extra dimensions, new gauge bosons, etc.


- Definition of forward-backward asymmetry:
 - A_{FB} = (F-B)/(F+B)
 F = number of events with cos(θ*)>0
 B = number of events with cos(θ*)<0
 - θ* defined in Collins-Soper reference frame
- θ dependence of the x-section
 - angle between incoming particle (quark) and outgoing particle (lepton)

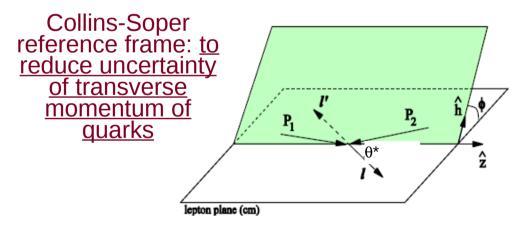
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} = \frac{3}{8} N_c \left[1 + \frac{4}{3} A_{FB} \cos\theta + \cos^2\theta\right]$$

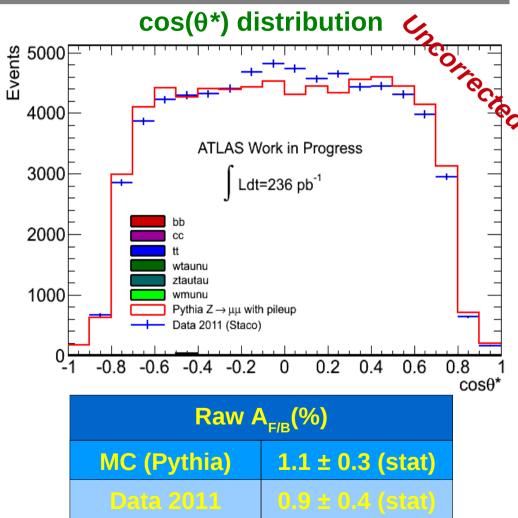
$Z \rightarrow \mu\mu$ candidate event selection

- Event selection (2011 data):
 - GRL + bcid
 - Trigger: EF mu20
 - \bullet N_{VTX} > 1 and N_{tracks} >= 3 and |Z_{VTX}| < 200 mm
 - At least 2 combined muons with

 - $|\eta| < 2.4$
 - |z₀| < 10 mm for both tracks (wrt to same "good" vertex)
 - Muon quality as Muon Combined
 Performance Group recommendations
 - Isolation: $\sum p_{T}/p_{T} < 0.2$ for both muon tracks
 - Charge: $c_1 * c_2 < 0$
 - Mass window: $66 < M_{\mu\mu} < 116 \text{ GeV}$

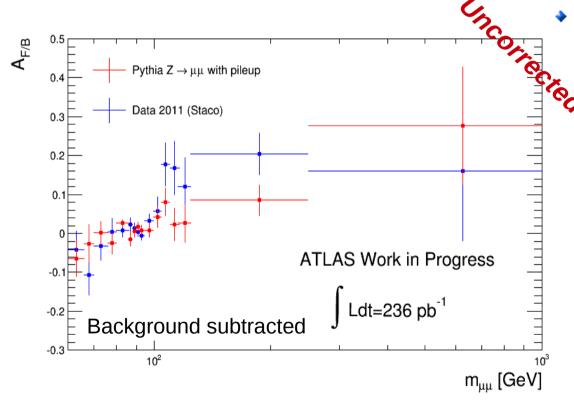
- Data sample luminosity
 - ~ 236 pb⁻¹ (actual 2011 available statistics!!)
 - Monte Carlo sample (Pythia MC10a, signal only)
 - mc10_7TeV.106047.PythiaZmumu_no_ filter.merge.NTUP_SMWZ.e574_s933_ s946_r2215_r2260_p545
 - MC corrections (up to now...)
 - Primary vertex (re)weigthing (PileupReweighting tool 2011)
 - MCP p_{T} smearing 2011





"Raw" A measurement

- Asymmetry evaluated with counting method:
 - A_{FB} =(F-B)/(F+B) F = number of events with cos(θ*)>0 B = number of events with cos(θ*)<0
- Only statistical error

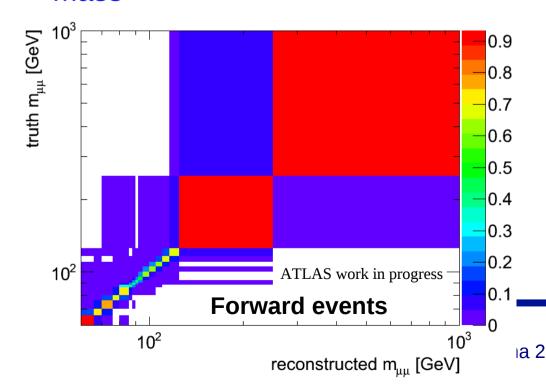


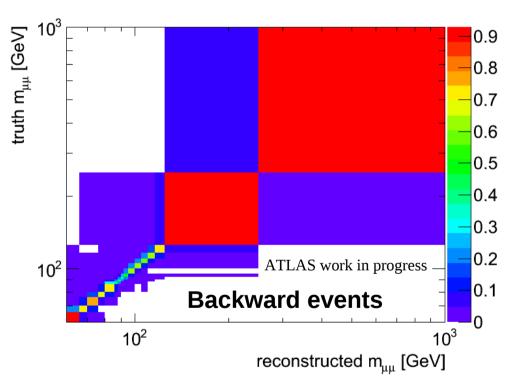
A_{F/R} vs di-muon invariant mass

A_{FB} for invariant mass bins

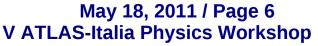
"Raw" distributions should be corrected using MC based response matrices to take into account for:

- detector resolution and FSR (mass bin migration correction)
- incorrect quark direction: the direction of the quark and anti-quark is not known in proton-proton experiments and leads to a <u>dilution</u> in the asymmetry

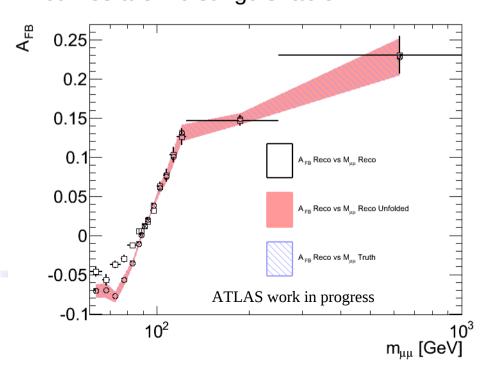


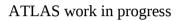


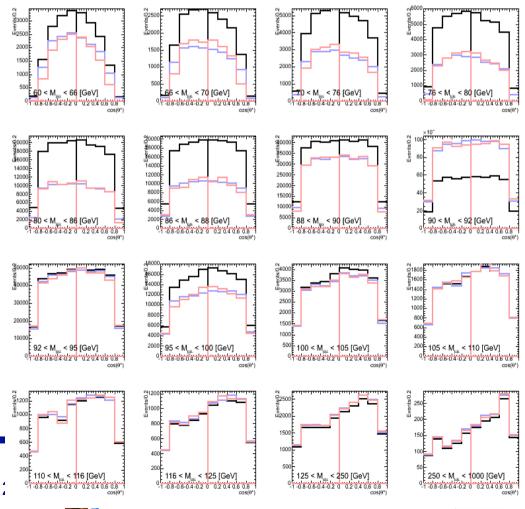
Mass bin migration correction


- Reconstructed invariant mass is not equal to truth mass
 - Need to correct for invariant mass migration
- Calculate the probability of a reconstructed mass to be a different mass

Mass Migration response matrices

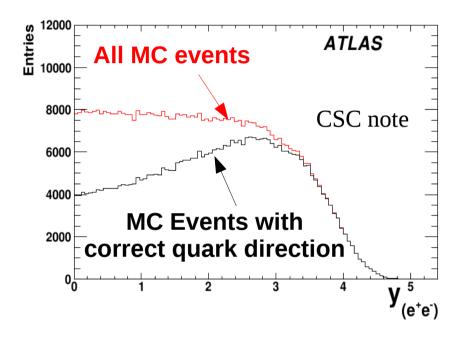


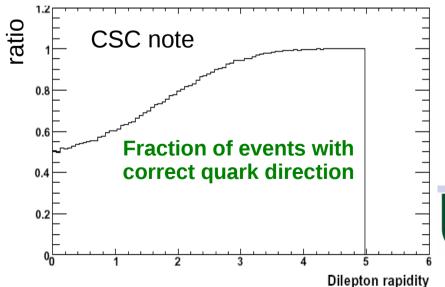



Mass migration closure test on MC

- Closure test on MC
- Compare:
 - Reco asymmetry vs uncorrected mass
 - Reco asymmetry vs corrected mass
 - Reco asymmetry vs true mass
- Correction brings back the mass distribution to its true value, up to the point that the two curves are indistinguishable

Showing the effect of mass bin correction on $cos(\theta^*)$ distribution

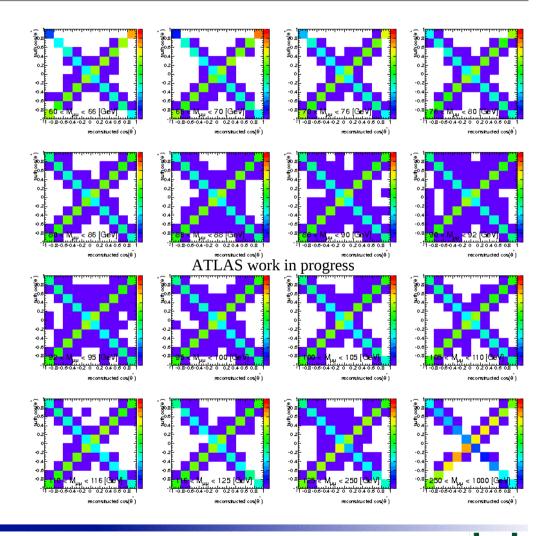




Quark direction: dilution

- At central di-lepton rapidity the probability that the valence quark direction and the di-lepton boost coincide is lower due the smallness of the valence quark distribution
 - This reduces the forward-backward asymmetry: <u>dilution</u>

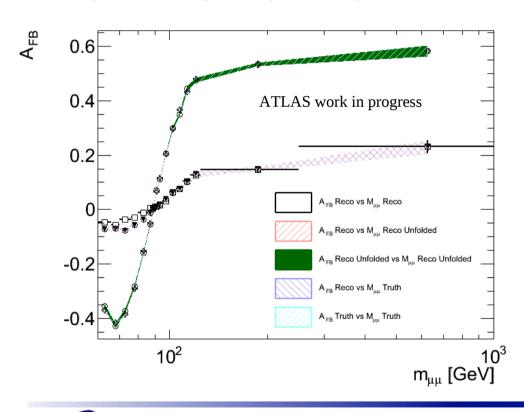
Less than 60% of events with correct quark direction at |Y| < 1

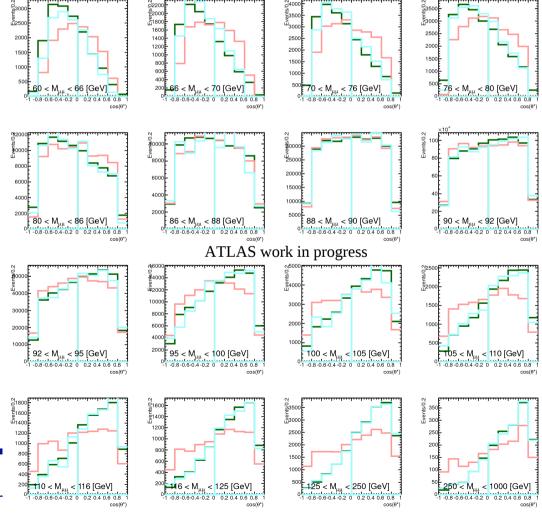


G.Cattani – giordano.cattani@cern.ch University of Rome "Tor Vergata" & INFN Ro

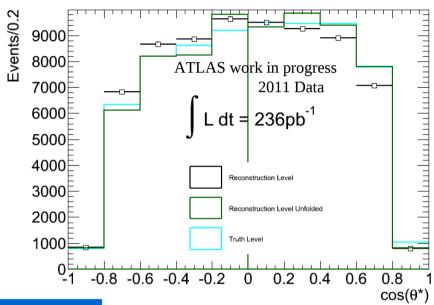
Dilution unfolding correction

- Same approach as for mass bin migration correction
 - A response matrix for each true mass bin
 - True vs Reconstructed $cos(\theta^*)$

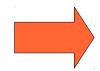



Unfolding closure test on MC

True and Unfolded A_{FB} are perfectly superimposed!!


G.Cattani – giordano.cattani@cern.ch University of Rome "Tor Vergata" & INFN Ror

Showing the effect of mass bin correction on $cos(\theta^*)$ distribution



- MC based corrections applied to 2011 data
 - "Raw" distribution unfolded for incorrect quark direction
- To reduce impact of low statistics
 - No binning in m_{iii} and y_{iii}
 - Average over all masses in range 66 < M_{...} < 116 GeV

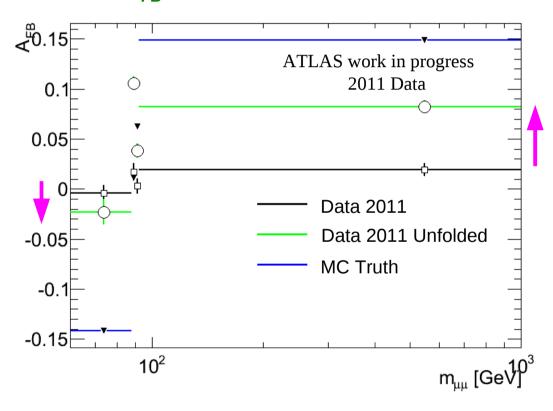
$cos(\theta^*)$ distribution

	A _{F/B} (%)
Data 2011 "Raw"	0.9 ± 0.4 (stat)
Data 2011 Unfolded	5.7 ± 0.4 (stat)
MC Truth Level	5.9 ± 0.07 (stat)



Perfect agreement in final A_{F/B} result between 2011 data and MC!!

Dilution Unfolding


A_{F/B} vs di-muon invariant mass

- All corrections applied
 - mass migration and dilution unfolding
- Corrections go in the *right direction*
 - however, agreement less good wrt one-bin case
 - lower data statistics in each mass bin
- If MC sample used as input with <u>similar statistics</u> as data: <u>closure test fails!</u>

more statistics needed for $A_{F/B}$ binned in $M_{\mu\mu}/Y_{\mu\mu}!$

A_{FR} for invariant mass bins

Preliminary $\sin^2\theta_{w}$ extraction

At $\sqrt{s} = m_{\tau}$ a direct relation between $A_{F/B}$ and $sin^2\theta_w$ exists

$$AFB = \frac{3}{4}A_qA_{\mu}$$

$$q \overline{q} \longrightarrow Z/\gamma * \longrightarrow \mu \mu$$

$AFB = rac{3}{4} \left(rac{2rac{g_u}{g_a}}{1 + \left(rac{g_v}{1} ight)^2} ight) rac{2(1 - 4sin^2 heta_W^{eff})}{1 + \left(1 - 4sin^2 heta_W^{eff} ight)^2}$

Test method on <u>raw</u> 2011 asymmetry

Initial state

$$g_v^u = 0.29 \ g_v^d = -0.33$$

 $g_a^u = 0.50 \ g_a^d = -0.524$

$$A_q = \frac{2\frac{g_v}{g_a}}{1 + \left(\frac{g_v}{g_a}\right)^2}$$

Final state

assumption:
$$(\mathbf{g}_{v}/\mathbf{g}_{a})^{u} \sim (\mathbf{g}_{v}/\mathbf{g}_{a})^{d}$$

$$A_{\mu} = \frac{2(1 - 4\sin^{2}\theta_{W}^{eff})}{1 + (1 - 4\sin^{2}\theta_{W}^{eff})^{2}}$$

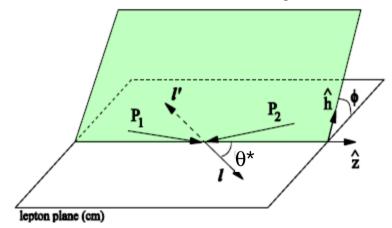
Mass Bin (GeV)	sin²θ _w
88 - 89	0.237 ± 0.007 (stat)
89 - 90	0.248 ± 0.006 (stat)
90 - 91	0.244 ± 0.006 (stat)

Actual PDG value: 0.23120 ± 0.00015

Summary and outlook

- A first measurement of the forward-backward asymmetry in $pp \rightarrow Z/\gamma^* + X \rightarrow \mu^+\mu^- + X$ with ~236 pb^{-1} has been presented
- MC based corrections for mass migration and dilution studied
 - Closure test on MC passed
 - Very good data/MC agreement for mass-averaged asymmetry value
 - Statistics still too small for $A_{F/B}$ binned in $M_{\mu\mu}/Y_{\mu\mu}$
- CONF note in preparation for EPS conference with muon (Roma2, Bonn) and electron (Mainz) results
- Work on $\sin^2\theta_w$ is ongoing

Backup slides



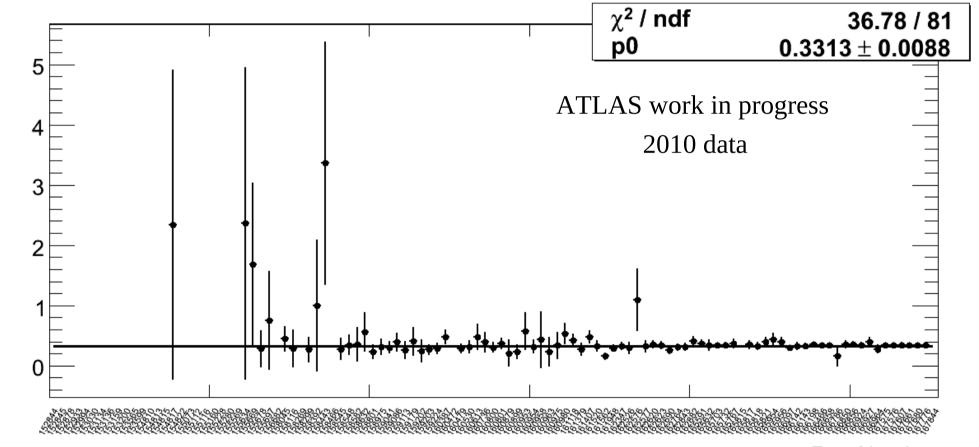
Collins-Soper reference frame

- Incoming quark direction not known at LHC
 - usually a valence quark annihilates with a sea anti-quark
 - in average the valence quark has more momentum than sea anti-quark
 - boosted system, quark same direction as Z/γ^*

Collins-Soper frame reduces uncertainty of transverse momentum of

quarks

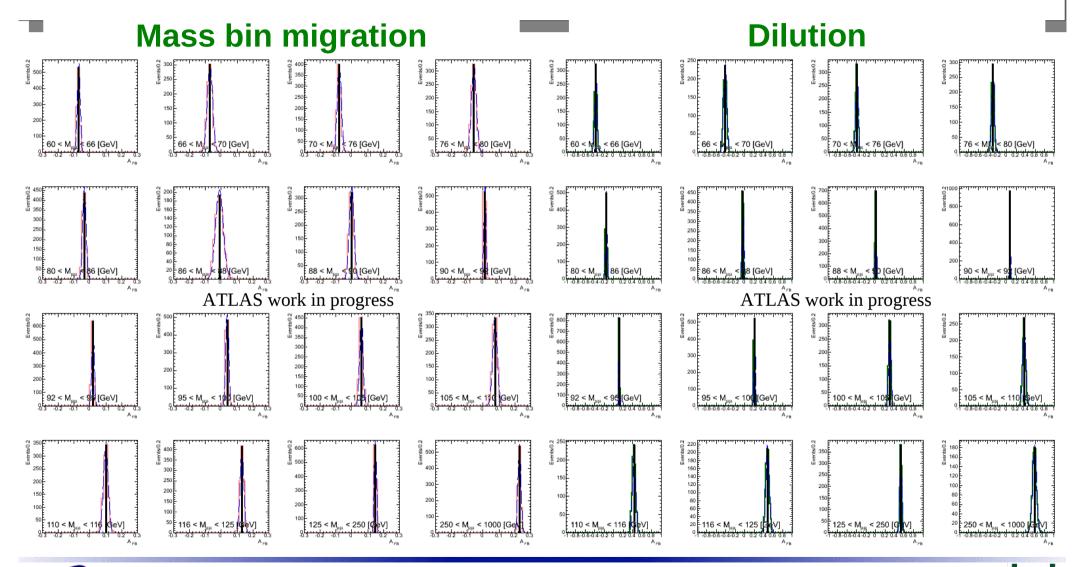
- Polar axis is defined as the bisector of the two proton beams
- θ^* angle between polar axis and lepton



Stability studies of $Z \rightarrow \mu\mu$ candidates

Yield per nb⁻¹

Run Number


More on mass correction and dilution

- Study effect of limited MC statistics (~ 2M reconstructed $Z \rightarrow \mu\mu$) on response matrices
- ToyMC:
 - Fluctuate matrix bins within statistical errors
 - For each matrix, calculate corrected mass[cos(θ*)] distributions, calculate asymmetry value
 - Next slide show the distribution of the asymmetry values in the various mass bins
 - Black line is value obtained with "nominal" (=non fluctuated) matrix
 - Dashed blue line: gaussian fit \rightarrow mean and σ
 - As expected, bins where correction is larger have larger dependence on statistical precision of matrix (see also previous slides)

A_{FB} vs mass bin

