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Overview

The importance of explainability
Ante-hoc explainability

The ProtoPNet architecture

Mammography and Digital Breast Tomosynthesis

ProtoPNet on medical images
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Case-based reasoning

Prototypical Learning

Northern Cardinal

Prototypical Part Learning
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This looks like that: deep learning for interpretable
image recognition

Chen, Li, et al. 2019, NeurlPS
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ProtoPNet architecture (inference)




ProtoPNet architecture (inference)

i

3.954

1.447

2.617

Similarity s

N A A
hE hE

Convolutional layers f Prototype layer g, Full




ProtoPNet architecture (inference)
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Convolutional layers

* Feature extraction:

[ J VG G Convolutional layers f’

* ResNet — Pretrained on ImageNet
* DenseNet

Original Image - Latent Representation
224 x 224 x 3 /7 x7xD



Prototype layer
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Fully connected layer
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The training algorithm
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* Stage 2: Projection of prototypes

* Stage 3: Optimization of last layer



The training algorithm (1/3)

Stage |: SGD of layers before last layer

1 n
min — Z CrsEnt(h o gp o f(%3),yi) + A1 Clst + A2Sep, where Clst and Sep are defined by

P, weony T 4
1=1

n n

1
Clst = — min min |z — pj||5;Sep = —— min min 1z — p;jll5-

n-o— J:P;j €Py, z€patches(f(x;)) n— J:P; €Py, z€patches(f(x;))

Clst: each training image has some latent patch close to, at least, one
prototype of the same class

Sep: every latent patch of a training image stays away from prototypes
of other classes



The training algorithm (2/3)

Stage 2: Projection of prototypes

p; < arg mgl |z — pj||2, where Z; = {z : z € patches(f(x;)) Vi s.t. y; = k}.
zZE 7

Each prototype projected onto the nearest latent training patch of the
same class




The training algorithm (3/3)

Stage 3: Optimization of last layer

. n K k,j
miny, = >y CrsEnt(hogpo f(xi), yi) +A >, Zj;pjgpk ‘wf(L & .

Adjust the last layer connection W,Ek’]) (k is the class index, j is the

prototype index), so that for prototype p; not in class k, Wf(lk’j) ~ 0

Less dependence on negative reasoning: " This does not look like
that”



Mammography

* Low-energy X-ray acquisitions
* Two views — CC & MLO
* Breast tissue characterization

2D mammogram
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Digital Breast Tomosynth esis e ]

* Reduced tissue superposition

* More accurate cancer detection

* Particularly beneficial for dense breast

tissue

Tomosynthesis

2D mammogram (3D mammogram)

Takes one
image from the top
and one from
the side.

Takes multiple
images in an arc-like
pattern, creating a
detailed image.

https://my.clevelandclinic.org/health/diagnostics/ 1 5939-digital-
breast-tomosynthesis-and-breast-cancer-screening
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(b) Digital Breast Tomosynthesis

Image from: Kontos, D., Bakic, P. R., & Maidment, A. D. (2008, March). Texture in digital

breast tomosynthesis: a comparison between mammographic and tomographic
characterization of parenchymal properties. In Medical Imaging 2008: Computer-Aided

Diagnosis (Vol. 6915, pp. 95-105). SPIE.
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CBIS-DDSM Dataset

Dataset CBIS-DDSM (Curated Breast Imaging Subset

Cleaning and Balancing

selection of DDSM)

Traini Benign 577 —> 528
rainin
& Malignant 637 —> 528
Benign 194 —> 131
Test

Malignant 147 =—> 131

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageld=22516629



https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=22516629

Differences from original ProtoPNet

e Dataset:

* From natural images to medical images = generation of 3-channel images from
single-channel medical images

* Training framework:

* Presence of hold-out test set: assess the final performance, after training in Cross-
Validation

* Fixed LR value and Early-stopping during training process

* Architectural changes:
* 2D Dropout and a 2D Batch-norm layer after each add-on convolutional layer
* Number of classes: 2

* Clinical feedback on the quality of output explanations



Results of our previous work
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Our work on DBT images
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* Why explainability is important

* Explainability: post-hoc vs ante-hoc methods

* Case-based reasoning and ProtoPNet architecture

* ProtoPNet in medical imaging:

* Mammography

* Digital Breast Tomosynthesis
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