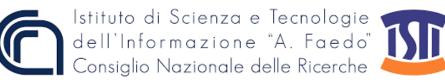
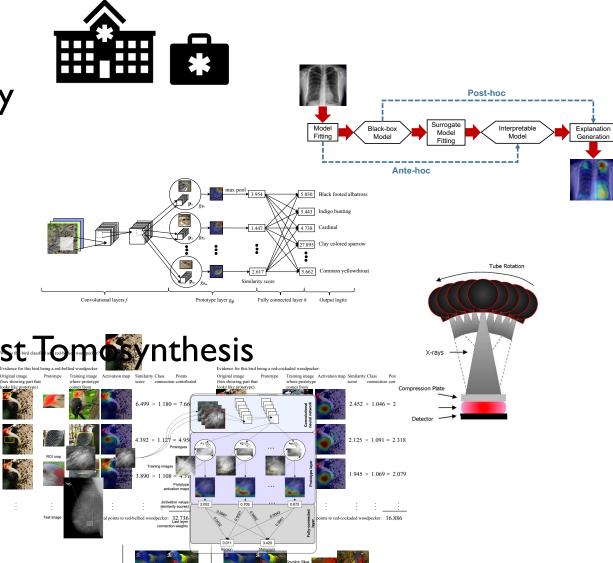
Ante-hoc explainability methods: the ProtoPNet architecture and its application on DBT images

ML-INFN 17/04/2023

Andrea Berti



- The importance of explainability
- Ante-hoc explainability
- The ProtoPNet architecture
- Mammography and Digital Breast Tom Mynthesis
- ProtoPNet on medical images



Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Titano, J. J., & Oermann, E. K. (2018). Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS medicine, 15(11), e1002683.

Why explainability

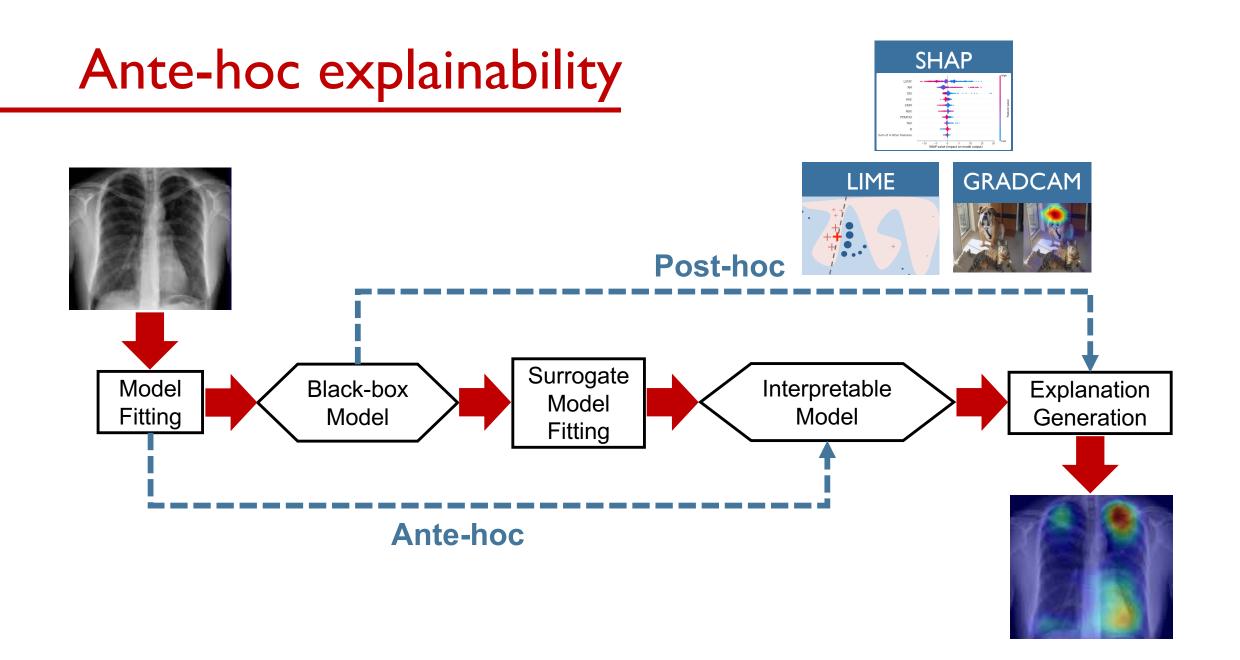
Normal

Pneumonia

Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Titano, J. J., & Oermann, E. K. (2018). Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS medicine, 15(11), e1002683.

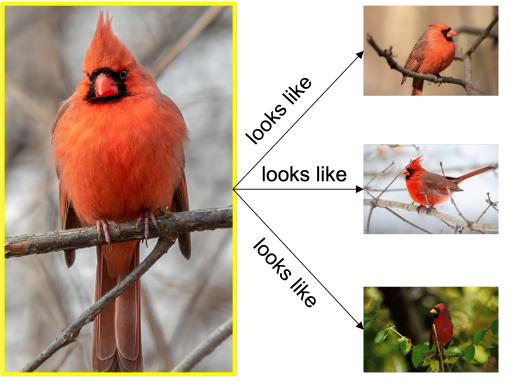
Why explainability

Pneumonia



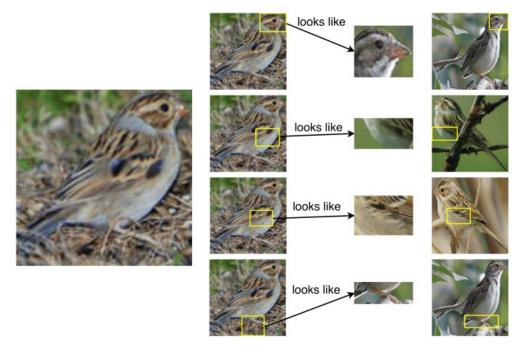
Case-based reasoning

Prototypical Learning



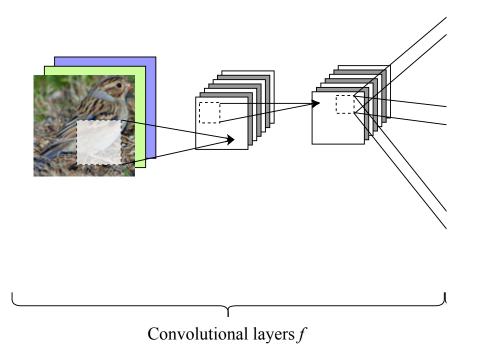
Northern Cardinal

Prototypical Part Learning

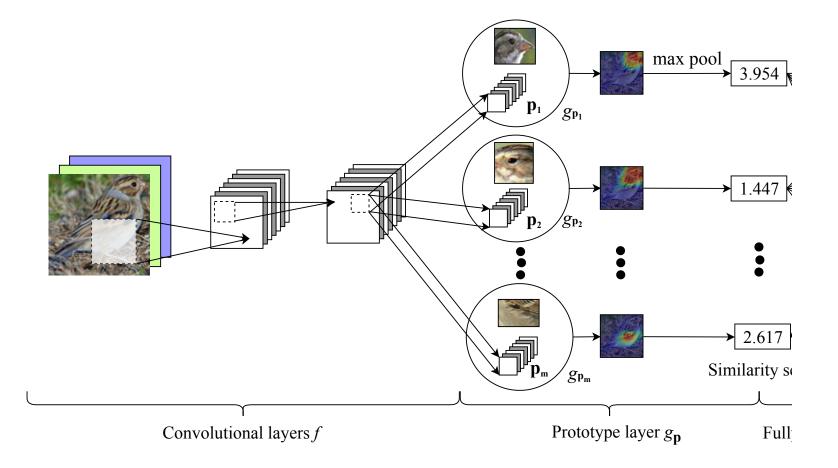


This looks like that: deep learning for interpretable image recognition Chen, Li, et al. 2019, NeurIPS

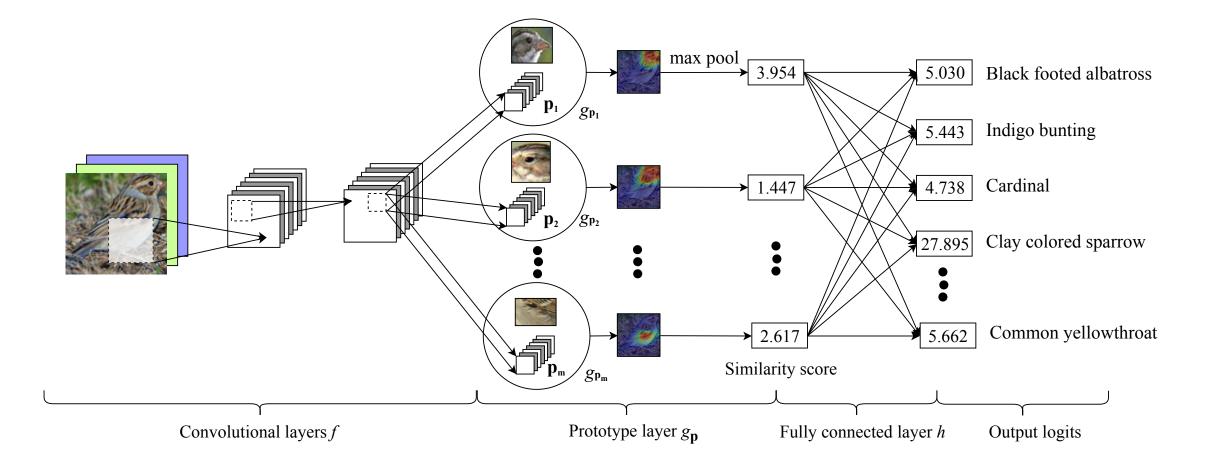
ProtoPNet architecture (inference)



ProtoPNet architecture (inference)



ProtoPNet architecture (inference)



VGG Convolutional layers f ResNet Pretrained on ImageNet DenseNet Why is this bird classfied as a red-bellied woodpecker? Evidence for this bird being a red-bellied woodpecker: Original image Prototype Training image Activation map Similarity Class Points (box showing part that where prototype score connection contributed ooks like prototype) comes from $6.499 \times 1.180 = 7.669$ $4.392 \times 1.127 = 4.950$ $3.890 \times 1.108 = 4.310$ Latent Representation **Original Image**

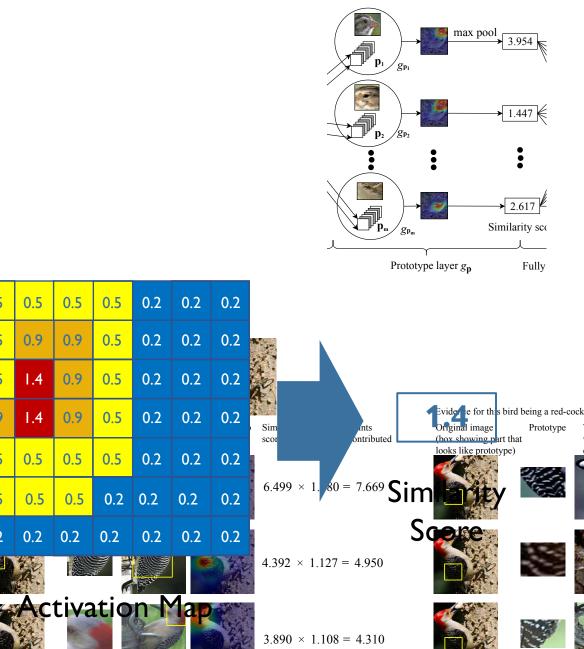
7 x 7 x D Total points to red-bellied woodpecker: 32.736

224 x 224 x 3

Convolutional layers

• Feature extraction:

Prototype layer



 $3.890 \times 1.108 = 4.310$

÷

0.5

0.9

0.9

0.9

0.5

0.5

0.2

÷

0.5

0.9

1.4

1.4

0.5

0.5

0.2

÷

0.5

0.5

0.5

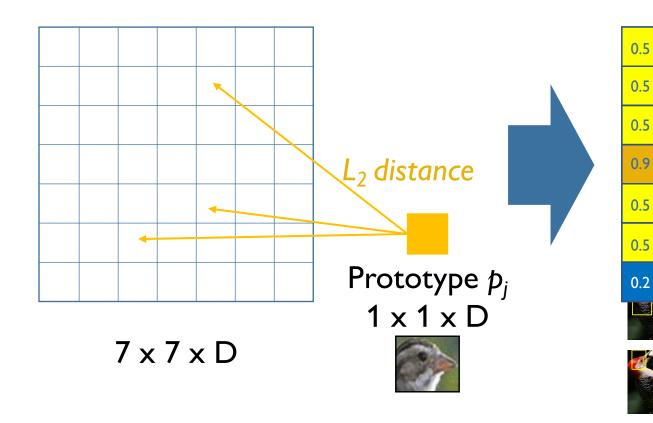
0.5

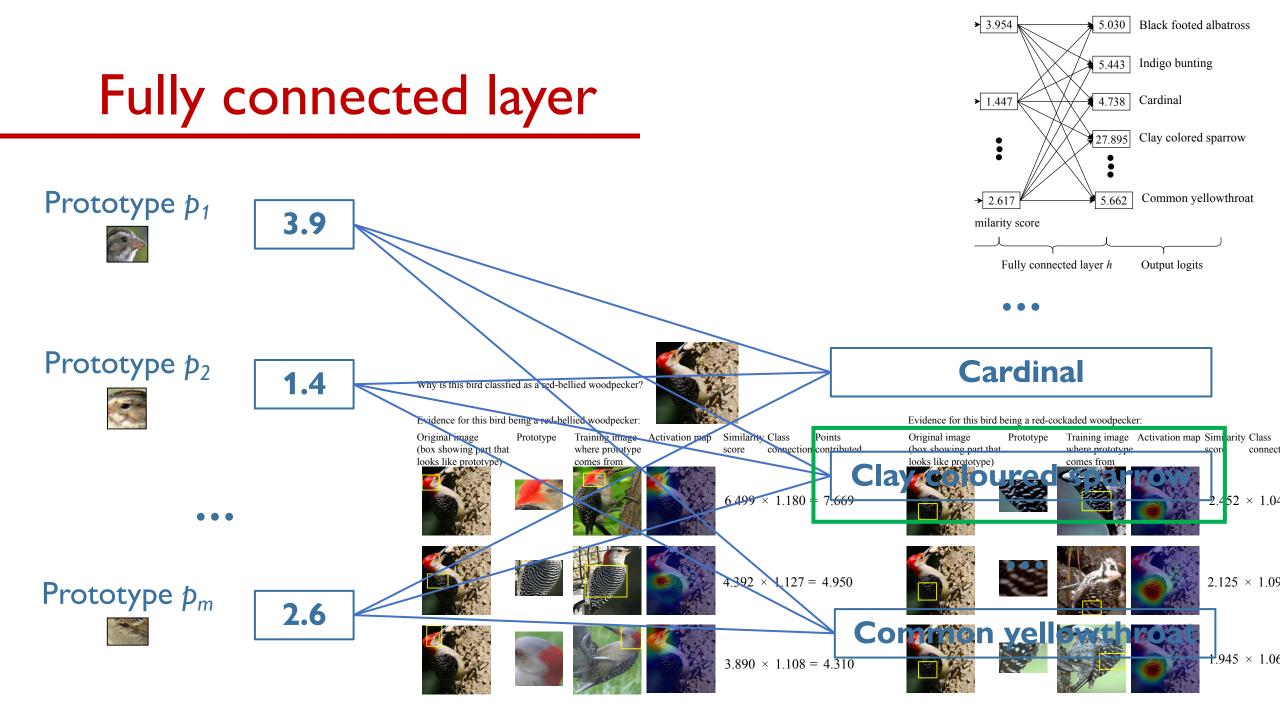
0.5

0.2

:

•



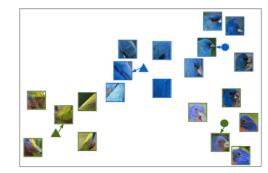


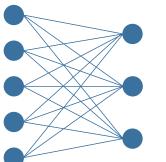
• Stage 2: Projection of prototypes

The training algorithm

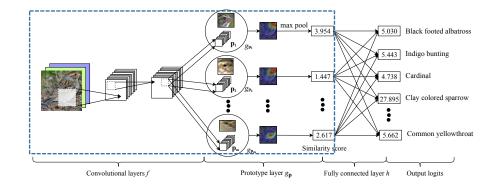
Three stages:

• Stage 3: Optimization of last layer





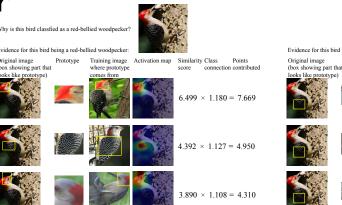
The training algorithm (1/3)



Stage I:SGD of layers before last layer

$$\min_{\mathbf{P}, w_{\text{conv}}} \frac{1}{n} \sum_{i=1}^{n} \text{CrsEnt}(h \circ g_{\mathbf{p}} \circ f(\mathbf{x}_{i}), \mathbf{y}_{i}) + \lambda_{1} \text{Clst} + \lambda_{2} \text{Sep},$$

$$\text{Clst} = \frac{1}{n} \sum_{i=1}^{n} \min_{j: \mathbf{p}_{j} \in \mathbf{P}_{y_{i}}} \min_{\mathbf{z} \in \text{patches}(f(\mathbf{x}_{i}))} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j: \mathbf{p}_{j} \in \mathbf{P}_{y_{i}}}^{n} \sum_{\mathbf{z} \in \text{patches}(f(\mathbf{x}_{i}))}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j: \mathbf{p}_{j} \in \mathbf{P}_{y_{i}}}^{n} \sum_{\mathbf{z} \in \text{patches}(f(\mathbf{x}_{i}))}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j: \mathbf{p}_{j} \in \mathbf{P}_{y_{i}}}^{n} \sum_{\mathbf{z} \in \text{patches}(f(\mathbf{x}_{i}))}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j: \mathbf{p}_{j} \in \mathbf{P}_{y_{i}}}^{n} \sum_{\mathbf{z} \in \text{patches}(f(\mathbf{x}_{i}))}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j: \mathbf{p}_{j} \in \mathbf{P}_{y_{i}}}^{n} \sum_{\mathbf{z} \in \text{patches}(f(\mathbf{x}_{i}))}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j: \mathbf{p}_{j} \in \mathbf{P}_{y_{i}}}^{n} \sum_{\mathbf{z} \in \text{patches}(f(\mathbf{x}_{i}))}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j \in \mathbf{P}_{y_{i}}}^{n} \sum_{\mathbf{z} \in \text{patches}(f(\mathbf{z}_{i}))}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j \in \mathbf{P}_{y_{i}}}^{n} \sum_{\mathbf{z} \in \text{patches}(f(\mathbf{z}_{i}))}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j \in \mathbf{P}_{y_{i}}}^{n} \sum_{\mathbf{z} \in \text{patches}(f(\mathbf{z}_{i}))}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j \in \mathbf{P}_{y_{i}}}^{n} \sum_{i=1}^{n} \sum_{j \in \mathbf{P}_{y_{i}}}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j \in \mathbf{P}_{y_{i}}}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}; \text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j \in \mathbf{P}_{y_{i}}}^{n} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{n} \|\mathbf$$



Evidence for this bird being a red-cockaded woodpecker:

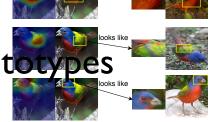
Prototype Training image Activation map Similarity Class where prototype score connection of the constraint of the const

2.125 × 1.091 =

1.945 5

Clst: each training image has some latent patch close to, at least, one prototype of the same class

Sep: every latent patch of a training image stays away from prototypes of other classes



(a) Object attention (class activation map) (b) Part attention (attention-based models)

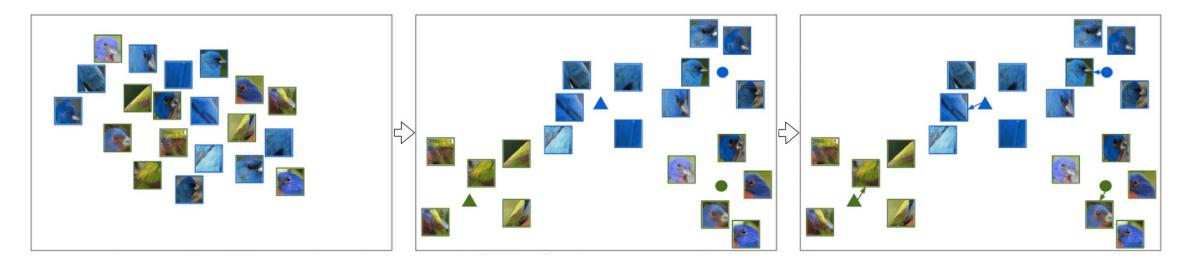
(c) Part attention + comparison with learned prototypical parts (our model)

The training algorithm (2/3)

Stage 2: Projection of prototypes

 $\mathbf{p}_j \leftarrow \arg\min_{\mathbf{z}\in\mathcal{Z}_j} \|\mathbf{z}-\mathbf{p}_j\|_2$, where $\mathcal{Z}_j = \{\tilde{\mathbf{z}}: \tilde{\mathbf{z}} \in \text{patches}(f(\mathbf{x}_i)) \forall i \text{ s.t. } y_i = k\}.$

Each prototype projected onto the nearest latent training patch of the same class

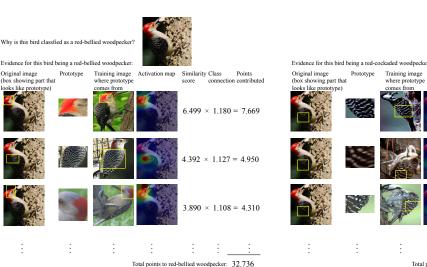


Stage 3: Optimization of last layer

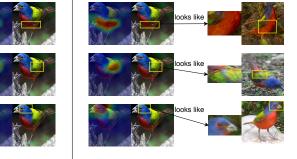
 $\min_{w_h} \frac{1}{n} \sum_{i=1}^{n} \operatorname{CrsEnt}(h \circ g_{\mathbf{p}} \circ f(\mathbf{x}_i), \mathbf{y}_i) + \lambda \sum_{k=1}^{h_{\text{loc static}}} k_{k} \sum_{i=1}^{n} f(\mathbf{x}_i) + \lambda \sum_{k=1}^{n} f(\mathbf{x}_i) + \lambda \sum_{i=1}^{n} f(\mathbf{x}_i) + \lambda \sum_{i=1}^{n$

Adjust the last layer connection $w_h^{(k,j)}$ (k is prototype index), so that for prototype p_i

Less dependence on **negative** reasoning: "This that"

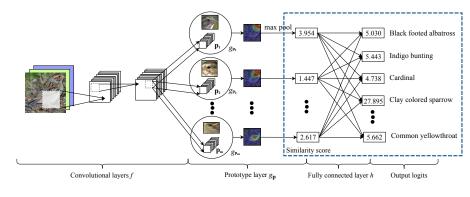


(box showing part tha



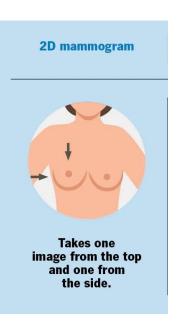
(a) Object attention (class activation map) (b) Part attention (attention-based models)

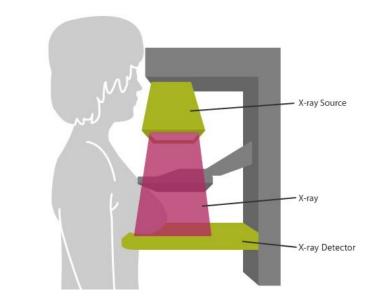
(c) Part attention + comparison with learned prototypical parts (our model)

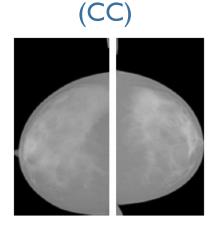


Mammography

- Low-energy X-ray acquisitions
- Two views CC & MLO
- Breast tissue characterization

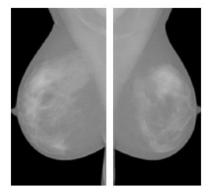






Cranio-Caudal

Medio-Lateral Oblique (MLO)



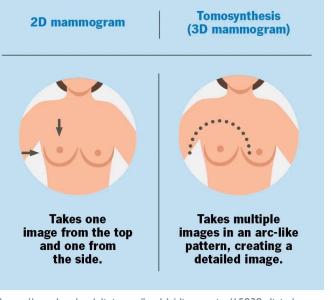
R

L

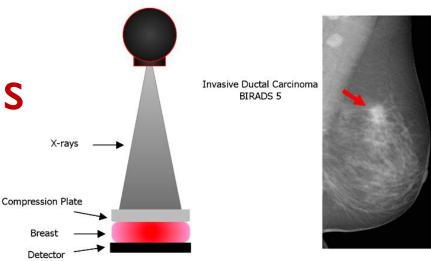
R

Digital Breast Tomosynthesis

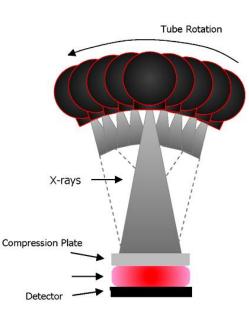
- Reduced tissue superposition
- More accurate cancer detection
- Particularly beneficial for dense breast tissue



https://my.clevelandclinic.org/health/diagnostics/15939-digital-breast-tomosynthesis-and-breast-cancer-screening



(a) Digital Mammography



(b) Digital Breast Tomosynthesis

Image from: Kontos, D., Bakic, P. R., & Maidment, A. D. (2008, March). Texture in digital breast tomosynthesis: a comparison between mammographic and tomographic characterization of parenchymal properties. In *Medical Imaging 2008: Computer-Aided Diagnosis* (Vol. 6915, pp. 95-105). SPIE.

Our previous work

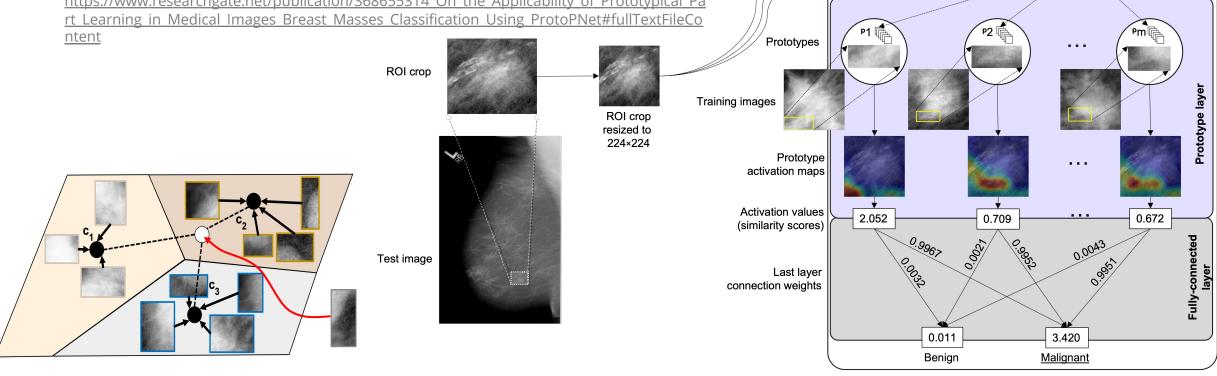
Convolutional neural network

Artificial Intelligence for Healthcare Applications 2nd International Workshop August 21st, 2022

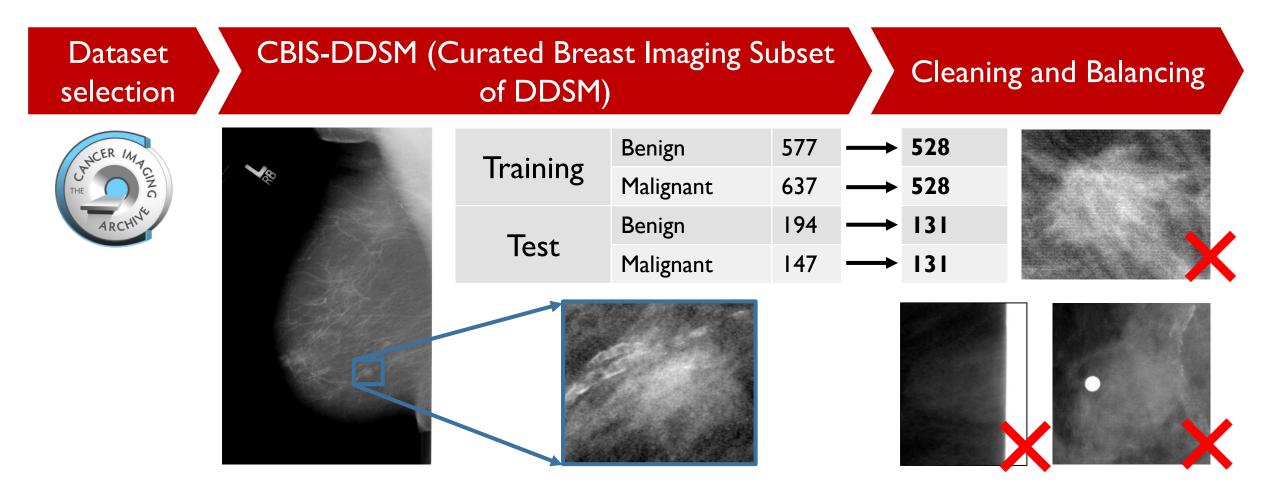
On the Applicability of Prototypical Part Learning in Medical Images: Breast Masses Classification Using ProtoPNet

with G. Carloni, C. Iacconi, M. A. Pascali and S. Colantonio (ISTI-CNR)

https://www.researchgate.net/publication/368655314 On the Applicability of Prototypical Pa



CBIS-DDSM Dataset

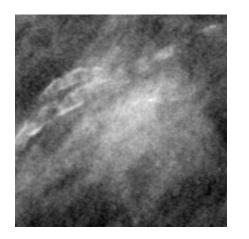


Differences from original ProtoPNet

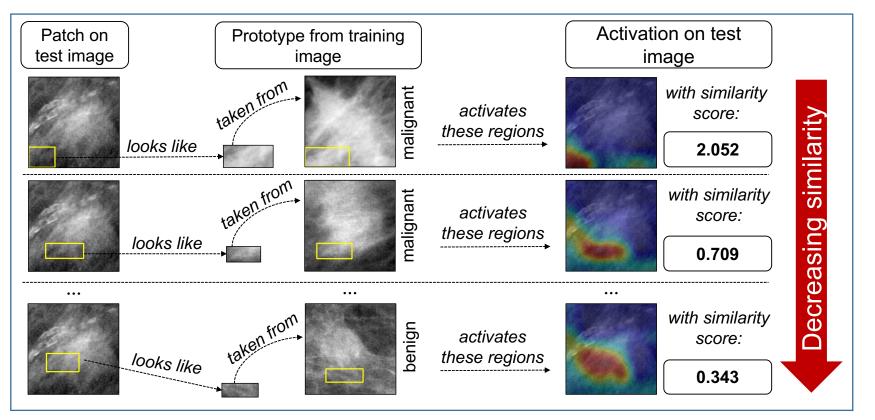
• Dataset:

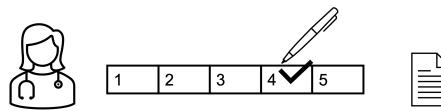
- From natural images to medical images → generation of 3-channel images from single-channel medical images
- Training framework:
 - Presence of hold-out test set: assess the final performance, after training in Cross-Validation
 - Fixed LR value and Early-stopping during training process
- Architectural changes:
 - 2D **Dropout** and a 2D **Batch-norm** layer after each add-on convolutional layer
 - Number of classes: 2
- Clinical **feedback** on the quality of output **explanations**

Results of our previous work

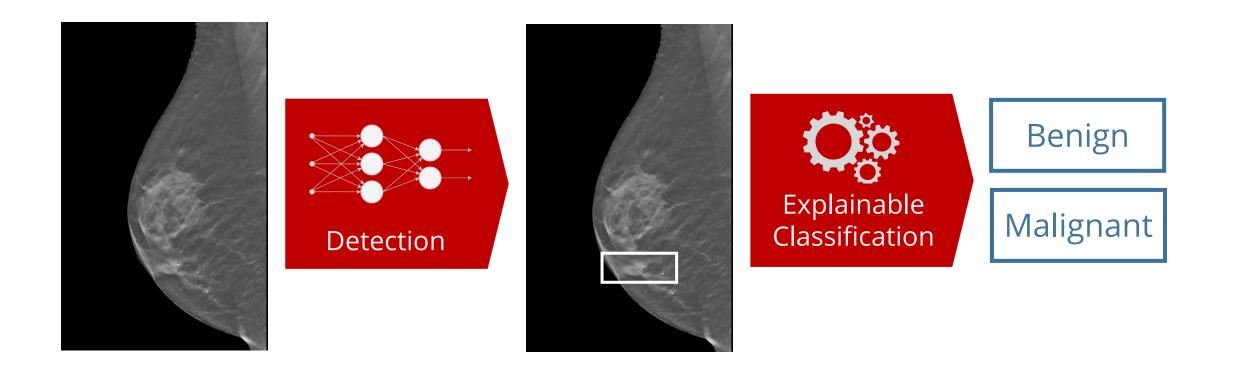


Test image: **malignant** Predicted as: **malignant**



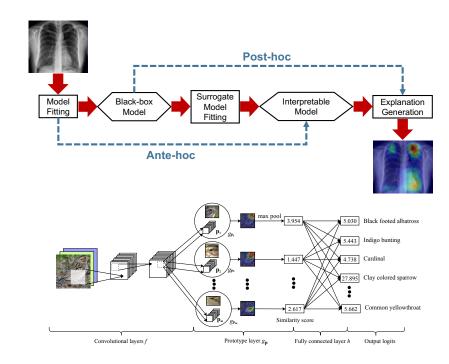


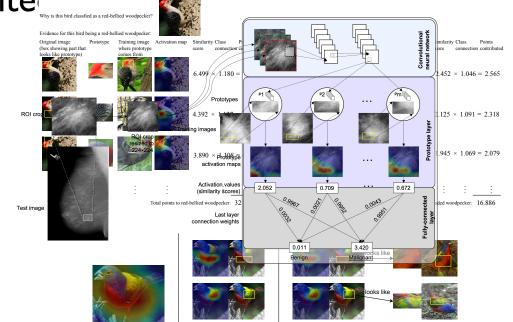
Our work on DBT images

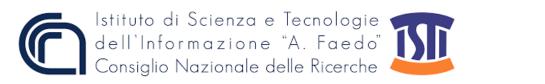


Conclusion

- Why explainability is important
- Explainability: post-hoc vs ante-hoc methods
- Case-based reasoning and ProtoPNet archite
- ProtoPNet in medical imaging:
 - Mammography
 - Digital Breast Tomosynthesis







Thank You

Any Questions?

Andrea Berti andrea.berti@isti.cnr.it

Ante-hoc explainability methods: the ProtoPNet architecture and its application on DBT images

ML-INFN 17/04/2023

Andrea Berti

