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Figure 2: ProtoPNet architecture.

Why	is	this	bird	classfied	as	a	red-bellied	woodpecker?

Evidence	for	this	bird	being	a	red-bellied	woodpecker:

Prototype Activation	map Similarity

score

Class

connection

Points

contributed

Total	points	to	red-bellied	woodpecker:

6.499

4.392

3.890

1.180

1.127

1.108

7.669

4.950

4.310

×

×

×

=

=

=

32.736

.	.	.	
.	.	.	

.	.	.	
.	.	.	

.	.	.	

Original	image

(box	showing	part	that

looks	like	prototype)

Training	image

where	prototype

comes	from

Evidence	for	this	bird	being	a	red-cockaded	woodpecker:

Prototype Activation	map Similarity

score

Class

connection

Points

contributed

Original	image

(box	showing	part	that

looks	like	prototype)

Training	image

where	prototype

comes	from

.	.	.	
.	.	.	

Total	points	to	red-cockaded	woodpecker:

2.452

2.125

1.945

1.046

1.091

1.069

2.565

2.318

2.079

×

×

×

=

=

=

16.886

.	.	.	
.	.	.	

.	.	.	
.	.	.	

.	.	.	
.	.	.	

.	.	.	

Figure 3: The reasoning process of our network in deciding the species of a bird (top).
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Figure 4: Visual comparison of different types of model interpretability: (a) object-level attention
map (e.g., class activation map [56]); (b) part attention (provided by attention-based interpretable
models); and (c) part attention with similar prototypical parts (provided by our model).
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Figure 5: Nearest prototypes to images and nearest images to prototypes. The prototypes are learned
from the training set.
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• The importance of explainability

• Ante-hoc explainability

• The ProtoPNet architecture

• Mammography and Digital Breast Tomosynthesis

• ProtoPNet on medical images
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Fig. 1 Imaging geometry and lesion conspicuity with (a) DM and (b) DBT 

 

Digital breast tomosynthesis (DBT) is a novel 3D x-ray imaging modality in which tomographic images of the breast 
are reconstructed from multiple low-dose x-ray source projection images acquired at different angles of the x-ray tube 9 
(Fig. 1.b). By combining information from different projections, tomosynthesis filters out non-adjacent anatomical 
breast structures, alleviating the effect of tissue superimposition. Clinical trials have shown that tomosynthesis provides 
superior tissue visualization and improved lesion conspicuity in comparison to projection mammography, resulting in 
higher sensitivity and specificity 10, 11.  Having the advantage of tomographic imaging, DBT offers the potential to 
alleviate the effect of tissue superimposition in parenchymal analysis, which could result in more accurate texture 
measures for breast cancer risk estimation.  

In this study, we analyzed texture in DBT and digital mammography (DM); we computed texture features that have 
been shown in previous studies with mammograms to correlate with breast cancer risk 4-8. Our goal was to compare 
tomographic versus mammographic texture characterization and evaluate the robustness of the texture descriptors in 
reflecting characteristic parenchymal properties. This study extends our previous report on texture analysis in 
tomosynthesis source projection images 12. Parenchymal analysis was performed in the retroareolar breast region using 
computer-extracted texture features.  We computed the correlation between mammographic and tomographic texture 
features. The degree of this correlation indicates the extent in which tissue superimposition introduces differences in 
image texture between the two modalities. We also computed the correlation of the texture features between the 
contralateral and ipsilateral breast of each woman. The degree of similarity in parenchymal texture between the affected 
and unaffected breasts reflects the degree to which characteristic parenchymal properties are inherent in an individual 
woman. This is an essential assumption in order to consider parenchymal texture as a marker of risk: The underlying 
hypothesis is that inherent biological factors associated with the risk of developing breast cancer are expressed in a 
woman’s parenchymal tissue and subsequently manifested in her mammographic texture 13.  
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Case-based reasoning

Prototypical Learning Prototypical Part Learning

This looks like that: deep learning for interpretable 
image recognition
Chen, Li, et al. 2019, NeurIPS
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Three stages:

• Stage 1: Stochastic Gradient Descent of layers before last layer

• Stage 2: Projection of prototypes

• Stage 3: Optimization of last layer

The training algorithm

Training Algorithm
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squared L
2 distances between the j-th prototype pj and all patches of z that have the same shape

as pj , and inverts the distances into similarity scores. The result is an activation map of similarity
scores whose value indicates how strong a prototypical part is present in the image. This activation
map preserves the spatial relation of the convolutional output, and can be upsampled to the size of the
input image to produce a heat map that identifies which part of the input image is most similar to the
learned prototype. The activation map of similarity scores produced by each prototype unit gpj is
then reduced using global max pooling to a single similarity score, which can be understood as how
strongly a prototypical part is present in some patch of the input image. In Figure 2, the similarity
score between the first prototype p1, a clay colored sparrow head prototype, and the most activated
(upper-right) patch of the input image of a clay colored sparrow is 3.954, and the similarity score
between the second prototype p2, a Brewer’s sparrow head prototype, and the most activated patch of
the input image is 1.447. This shows that our model finds that the head of a clay colored sparrow has
a stronger presence than that of a Brewer’s sparrow in the input image. Mathematically, the prototype
unit gpj computes gpj (z) = maxz̃2patches(z) log

�
(kz̃� pjk22 + 1)/(kz̃� pjk22 + ✏)

�
. The function

gpj is monotonically decreasing with respect to kz̃ � pjk2 (if z̃ is the closest latent patch to pj).
Hence, if the output of the j-th prototype unit gpj is large, then there is a patch in the convolutional
output that is (in 2-norm) very close to the j-th prototype in the latent space, and this in turn means
that there is a patch in the input image that has a similar concept to what the j-th prototype represents.

In our ProtoPNet, we allocate a pre-determined number of prototypes mk for each class k 2
{1, ...,K} (10 per class in our experiments), so that every class will be represented by some pro-
totypes in the final model. Section S9.2 of the supplement discusses the choice of mk and other
hyperparameters in greater detail. Let Pk ✓ P be the subset of prototypes that are allocated to class
k: these prototypes should capture the most relevant parts for identifying images of class k.

Finally, the m similarity scores produced by the prototype layer gp are multiplied by the weight
matrix wh in the fully connected layer h to produce the output logits, which are normalized using
softmax to yield the predicted probabilities for a given image belonging to various classes.

ProtoPNet’s inference computation mechanism can be viewed as a special case of a more general
type of probabilistic inference under some reasonable assumptions. This interpretation is presented
in detail in Section S2 of the supplementary material.

2.2 Training algorithm

The training of our ProtoPNet is divided into: (1) stochastic gradient descent (SGD) of layers before
the last layer; (2) projection of prototypes; (3) convex optimization of last layer. It is possible to
cycle through these three stages more than once. The entire training algorithm is summarized in an
algorithm chart, which can be found in Section S9.3 of the supplement.

Stochastic gradient descent (SGD) of layers before last layer: In the first training stage, we aim
to learn a meaningful latent space, where the most important patches for classifying images are
clustered (in L

2-distance) around semantically similar prototypes of the images’ true classes, and the
clusters that are centered at prototypes from different classes are well-separated. To achieve this goal,
we jointly optimize the convolutional layers’ parameters wconv and the prototypes P = {pj}mj=1
in the prototype layer gp using SGD, while keeping the last layer weight matrix wh fixed. Let
D = [X,Y] = {(xi, yi)}ni=1 be the set of training images. The optimization problem we aim to
solve here is:

min
P,wconv

1

n

nX

i=1

CrsEnt(h � gp � f(xi),yi) + �1Clst + �2Sep, where Clst and Sep are defined by

Clst =
1

n

nX

i=1

min
j:pj2Pyi

min
z2patches(f(xi))

kz� pjk22; Sep = � 1

n

nX

i=1

min
j:pj 62Pyi

min
z2patches(f(xi))

kz� pjk22.

The cross entropy loss (CrsEnt) penalizes misclassification on the training data. The minimization of
the cluster cost (Clst) encourages each training image to have some latent patch that is close to at
least one prototype of its own class, while the minimization of the separation cost (Sep) encourages
every latent patch of a training image to stay away from the prototypes not of its own class. These
terms shape the latent space into a semantically meaningful clustering structure, which facilitates the
L
2-distance-based classification of our network.
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The training algorithm (2/3)

Stage 2: Projection of prototypes

Each prototype projected onto the nearest latent training patch of the 
same class

In this training stage, we also fix the last layer h, whose weight matrix is wh. Let w(k,j)
h be the

(k, j)-th entry in wh that corresponds to the weight connection between the output of the j-th
prototype unit gpj and the logit of class k. Given a class k, we set w(k,j)

h = 1 for all j with pj 2 Pk

and w
(k,j)
h = �0.5 for all j with pj 62 Pk (when we are in this stage for the first time). Intuitively,

the positive connection between a class k prototype and the class k logit means that similarity to a
class k prototype should increase the predicted probability that the image belongs to class k, and the
negative connection between a non-class k prototype and the class k logit means that similarity to a
non-class k prototype should decrease class k’s predicted probability. By fixing the last layer h in
this way, we can force the network to learn a meaningful latent space because if a latent patch of a
class k image is too close to a non-class k prototype, it will decrease the predicted probability that
the image belongs to class k and increase the cross entropy loss in the training objective. Note that
both the separation cost and the negative connection between a non-class k prototype and the class k
logit encourage prototypes of class k to represent semantic concepts that are characteristic of class k
but not of other classes: if a class k prototype represents a semantic concept that is also present in a
non-class k image, this non-class k image will highly activate that class k prototype, and this will be
penalized by increased (i.e., less negative) separation cost and increased cross entropy (as a result
of the negative connection). The separation cost is new to this paper, and has not been explored by
previous works of prototype learning (e.g., [3, 23]).

Projection of prototypes: To be able to visualize the prototypes as training image patches, we
project (“push”) each prototype pj onto the nearest latent training patch from the same class as that
of pj . In this way, we can conceptually equate each prototype with a training image patch. (Section
2.3 discusses how we visualize the projected prototypes.) Mathematically, for prototype pj of class
k, i.e., pj 2 Pk, we perform the following update:

pj  arg min
z2Zj

kz� pjk2,where Zj = {z̃ : z̃ 2 patches(f(xi)) 8i s.t. yi = k}.

The following theorem provides some theoretical understanding of how prototype projection affects
classification accuracy. We use another notation for prototypes pk

l , where k represents the class
identity of the prototype and l is the index of that prototype among all prototypes of that class.
Theorem 2.1. Let h � gp � f be a ProtoPNet. For each k, l, we use bk

l to denote the value of the l-th
prototype for class k before the projection of pk

l to the nearest latent training patch of class k, and
use akl to denote its value after the projection. Let x be an input image that is correctly classified by
the ProtoPNet before the projection, zkl = argminz̃2patches(f(x)) kz̃� bk

l k2 be the nearest patch of
f(x) to the prototype pk

l before the projection (i.e., bk
l ), and c be the correct class label of x.

Suppose that: (A1) zkl is also the nearest latent patch to prototype pk
l after the projection (akl ),

i.e., zkl = argminz̃2patches(f(x)) kz̃ � akl k2; (A2) there exists some � with 0 < � < 1 such that:
(A2a) for all incorrect classes’ prototypes k 6= c and l 2 {1, ...,mk}, we have kakl � bk

l k2 
✓kzkl �bk

l k2�
p
✏, where we define ✓ = min

⇣p
1 + � � 1, 1� 1p

2��

⌘
(✏ comes from the prototype

activation function gpj defined in Section 2.1); (A2b) for the correct class c and for all l 2 {1, ...,mc},
we have kacl � bc

l k2  (
p
1 + � � 1)kzcl � bc

l k2 and kzcl � bc
l k2 

p
1� �; (A3) the number of

prototypes is the same for each class, which we denote by m
0. (A4) for each class k, the weight

connection in the fully connected last layer h between a class k prototype and the class k logit is
1, and that between a non-class k prototype and the class k logit is 0 (i.e., w(k,j)

h = 1 for all j with
pj 2 Pk and w

(k,j)
h = 0 for all j with pj 62 Pk).

Then after projection, the output logit for the correct class c can decrease at most by �max =
m

0 log((1 + �)(2� �)), and the output logit for every incorrect class k 6= c can increase at most by
�max. If the output logits between the top-2 classes are at least 2�max apart, then the projection of
prototypes to their nearest latent training patches does not change the prediction of x.

Intuitively speaking, the theorem states that, if prototype projection does not move the prototypes
by much (assured by the optimization of the cluster cost Clst), the prediction does not change for
examples that the model predicted correctly with some confidence before the projection. The proof is
in Section S1 of the supplement.

Note that prototype projection has the same time complexity as feedforward computation of a regular
convolutional layer followed by global average pooling, a configuration common in standard CNNs

6
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The training algorithm (3/3)

Stage 3: Optimization of last layer

Adjust the last layer connection (!",$ () is the class index, * is the 
prototype index), so that for prototype '$ not in class ), (!

(",$) ≈ 0

Less dependence on negative reasoning: ”This does not look like 
that”

(e.g., ResNet, DenseNet), because the former takes the minimum distance over all prototype-sized
patches, and the latter takes the average of dot-products over all filter-sized patches. Hence, prototype
projection does not introduce extra time complexity in training our network.

Convex optimization of last layer: In this training stage, we perform a convex optimization on
the weight matrix wh of last layer h. The goal of this stage is to adjust the last layer connection
w

(k,j)
h , so that for k and j with pj 62 Pk, our final model has the sparsity property w

(k,j)
h ⇡ 0

(initially fixed at �0.5). This sparsity is desirable because it means that our model relies less on
a negative reasoning process of the form “this bird is of class k

0 because it is not of class k (it
contains a patch that is not prototypical of class k).” The optimization problem we solve here is:
minwh

1
n

Pn
i=1 CrsEnt(h�gp �f(xi),yi)+�

PK
k=1

P
j:pj 62Pk

|w(k,j)
h |. This optimization is convex

because we fix all the parameters from the convolutional and prototype layers. This stage further
improves accuracy without changing the learned latent space or prototypes.

2.3 Prototype visualization

Given a prototype pj and the training image x whose latent patch is used as pj during prototype
projection, how do we decide which patch of x (in the pixel space) corresponds to pj? In our work,
we use the image patch of x that is highly activated by pj as the visualization of pj . The reason
is that the patch of x that corresponds to pj should be the one that pj activates most strongly on,
and we can find the patch of x on which pj has the strongest activation by forwarding x through a
trained ProtoPNet and upsampling the activation map produced by the prototype unit gpj (before max-
pooling) to the size of the image x – the most activated patch of x is indicated by the high activation
region in the (upsampled) activation map. We then visualize pj with the smallest rectangular patch
of x that encloses pixels whose corresponding activation value in the upsampled activation map from
gpj is at least as large as the 95th-percentile of all activation values in that same map. Section S7 of
the supplement describes prototype visualization in greater detail.

2.4 Reasoning process of our network

Figure 3 shows the reasoning process of our ProtoPNet in reaching a classification decision on a
test image of a red-bellied woodpecker at the top of the figure. Given this test image x, our model
compares its latent features f(x) against the learned prototypes. In particular, for each class k, our
network tries to find evidence for x to be of class k by comparing its latent patch representations
with every learned prototype pj of class k. For example, in Figure 3 (left), our network tries to
find evidence for the red-bellied woodpecker class by comparing the image’s latent patches with
each prototype (visualized in “Prototype” column) of that class. This comparison produces a map of
similarity scores towards each prototype, which was upsampled and superimposed on the original
image to see which part of the given image is activated by each prototype. As shown in the “Activation
map” column in Figure 3 (left), the first prototype of the red-bellied woodpecker class activates most
strongly on the head of the testing bird, and the second prototype on the wing: the most activated
image patch of the given image for each prototype is marked by a bounding box in the “Original
image” column – this is the image patch that the network considers to look like the corresponding
prototype. In this case, our network finds a high similarity between the head of the given bird and the
prototypical head of a red-bellied woodpecker (with a similarity score of 6.499), as well as between
the wing and the prototypical wing (with a similarity score of 4.392). These similarity scores are
weighted and summed together to give a final score for the bird belonging to this class. The reasoning
process is similar for all other classes (Figure 3 (right)). The network finally correctly classifies the
bird as a red-bellied woodpecker. Section S3 of the supplement provides more examples of how our
ProtoPNet classifies previously unseen images of birds.

2.5 Comparison with baseline models and attention-based interpretable deep models

The accuracy of our ProtoPNet (with various base CNN architectures) on cropped bird images is
compared to that of the corresponding baseline model in the top of Table 1: the first number in
each cell gives the mean accuracy, and the second number gives the standard deviation, over three
runs. To ensure fairness of comparison, the baseline models (without the prototype layer) were
trained on the same augmented dataset of cropped bird images as the corresponding ProtoPNet.
As we can see, the test accuracy of our ProtoPNet is comparable with that of the corresponding
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Figure 4: Visual comparison of different types of model interpretability: (a) object-level attention
map (e.g., class activation map [56]); (b) part attention (provided by attention-based interpretable
models); and (c) part attention with similar prototypical parts (provided by our model).
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										below:	test	image	with	patch	closest	to	each
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(b)	nearest	image	patches	to	prototypes
left:	prototype,	with	prototypical	parts	in	box
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Figure 5: Nearest prototypes to images and nearest images to prototypes. The prototypes are learned
from the training set.
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Mammography

• Low-energy X-ray acquisitions
• Two views – CC & MLO
• Breast tissue characterization
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Fig. 1 Imaging geometry and lesion conspicuity with (a) DM and (b) DBT 

 

Digital breast tomosynthesis (DBT) is a novel 3D x-ray imaging modality in which tomographic images of the breast 
are reconstructed from multiple low-dose x-ray source projection images acquired at different angles of the x-ray tube 9 
(Fig. 1.b). By combining information from different projections, tomosynthesis filters out non-adjacent anatomical 
breast structures, alleviating the effect of tissue superimposition. Clinical trials have shown that tomosynthesis provides 
superior tissue visualization and improved lesion conspicuity in comparison to projection mammography, resulting in 
higher sensitivity and specificity 10, 11.  Having the advantage of tomographic imaging, DBT offers the potential to 
alleviate the effect of tissue superimposition in parenchymal analysis, which could result in more accurate texture 
measures for breast cancer risk estimation.  

In this study, we analyzed texture in DBT and digital mammography (DM); we computed texture features that have 
been shown in previous studies with mammograms to correlate with breast cancer risk 4-8. Our goal was to compare 
tomographic versus mammographic texture characterization and evaluate the robustness of the texture descriptors in 
reflecting characteristic parenchymal properties. This study extends our previous report on texture analysis in 
tomosynthesis source projection images 12. Parenchymal analysis was performed in the retroareolar breast region using 
computer-extracted texture features.  We computed the correlation between mammographic and tomographic texture 
features. The degree of this correlation indicates the extent in which tissue superimposition introduces differences in 
image texture between the two modalities. We also computed the correlation of the texture features between the 
contralateral and ipsilateral breast of each woman. The degree of similarity in parenchymal texture between the affected 
and unaffected breasts reflects the degree to which characteristic parenchymal properties are inherent in an individual 
woman. This is an essential assumption in order to consider parenchymal texture as a marker of risk: The underlying 
hypothesis is that inherent biological factors associated with the risk of developing breast cancer are expressed in a 
woman’s parenchymal tissue and subsequently manifested in her mammographic texture 13.  

Proc. of SPIE Vol. 6915  69150A-2

Image from: Kontos, D., Bakic, P. R., & Maidment, A. D. (2008, March). Texture in digital 
breast tomosynthesis: a comparison between mammographic and tomographic
characterization of parenchymal properties. In Medical Imaging 2008: Computer-Aided
Diagnosis (Vol. 6915, pp. 95-105). SPIE.

• Reduced tissue superposition
• More accurate cancer detection
• Particularly beneficial for dense breast 
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are reconstructed from multiple low-dose x-ray source projection images acquired at different angles of the x-ray tube 9 
(Fig. 1.b). By combining information from different projections, tomosynthesis filters out non-adjacent anatomical 
breast structures, alleviating the effect of tissue superimposition. Clinical trials have shown that tomosynthesis provides 
superior tissue visualization and improved lesion conspicuity in comparison to projection mammography, resulting in 
higher sensitivity and specificity 10, 11.  Having the advantage of tomographic imaging, DBT offers the potential to 
alleviate the effect of tissue superimposition in parenchymal analysis, which could result in more accurate texture 
measures for breast cancer risk estimation.  

In this study, we analyzed texture in DBT and digital mammography (DM); we computed texture features that have 
been shown in previous studies with mammograms to correlate with breast cancer risk 4-8. Our goal was to compare 
tomographic versus mammographic texture characterization and evaluate the robustness of the texture descriptors in 
reflecting characteristic parenchymal properties. This study extends our previous report on texture analysis in 
tomosynthesis source projection images 12. Parenchymal analysis was performed in the retroareolar breast region using 
computer-extracted texture features.  We computed the correlation between mammographic and tomographic texture 
features. The degree of this correlation indicates the extent in which tissue superimposition introduces differences in 
image texture between the two modalities. We also computed the correlation of the texture features between the 
contralateral and ipsilateral breast of each woman. The degree of similarity in parenchymal texture between the affected 
and unaffected breasts reflects the degree to which characteristic parenchymal properties are inherent in an individual 
woman. This is an essential assumption in order to consider parenchymal texture as a marker of risk: The underlying 
hypothesis is that inherent biological factors associated with the risk of developing breast cancer are expressed in a 
woman’s parenchymal tissue and subsequently manifested in her mammographic texture 13.  
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https://my.clevelandclinic.org/health/diagnostics/15939-digital-
breast-tomosynthesis-and-breast-cancer-screening

Digital Breast Tomosynthesis
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CBIS-DDSM Dataset

Training
Benign 577

Malignant 637

Test
Benign 194

Malignant 147

Dataset
selection

Cleaning and BalancingCBIS-DDSM (Curated Breast Imaging Subset 
of DDSM)
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131
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https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=22516629
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• Dataset:
• From natural images to medical images à generation of 3-channel images from 

single-channel medical images

• Training framework:
• Presence of hold-out test set: assess the final performance, after training in Cross-

Validation
• Fixed LR value and Early-stopping during training process

• Architectural changes:
• 2D Dropout and a 2D Batch-norm layer after each add-on convolutional layer
• Number of classes: 2

• Clinical feedback on the quality of output explanations

Differences from original ProtoPNet
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Our work on DBT images
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• Why explainability is important

• Explainability: post-hoc vs ante-hoc methods

• Case-based reasoning and ProtoPNet architecture

• ProtoPNet in medical imaging:

• Mammography

• Digital Breast Tomosynthesis
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Figure 2: ProtoPNet architecture.
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Figure 3: The reasoning process of our network in deciding the species of a bird (top).
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Figure 4: Visual comparison of different types of model interpretability: (a) object-level attention
map (e.g., class activation map [56]); (b) part attention (provided by attention-based interpretable
models); and (c) part attention with similar prototypical parts (provided by our model).
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Figure 5: Nearest prototypes to images and nearest images to prototypes. The prototypes are learned
from the training set.
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