

stituto Nazionale di Fisica Nucleare Sezione di Bologna

NAIA/AMS-02 Italy Meeting: Status of Nuclei Analysis B, C, N & O

Alejandro Reina Conde, INFN Sezione di Bologna Alberto Oliva, INFN Sezione di Bologna

Friday 21th of April, 2023

Some useful information

• NAIA v1.0.0 ntuples

- First 10 years of AMS-02 pass8 data, from Bartels 2426 to Bartels 2560.
- MonteCarlo pass8 B1236 for boron, carbon, nitrogen and oxygen.
- RTI v7/v8, Valerio is re-processing it (maybe done already?)

Carbon 8.5 years flux : folded acceptance first iteration, no background subtraction

Inner-L1 selection

Orbital Cuts

A good second Livetime > 0.05 Zenith Angle < 40 Alignment (IMD-PG_{IL1}I<35 um, IMD-PG_{IL9}I<45 um) Not in SAA $R_{Inner-L1}$ >1.2x R_{ctf}

Not using the new RTI cuts propossed by Qi Yan

Selection cuts

Physics trigger β with ≥ 3 hits $\beta > 0.3$ Inner Tracker Y hits ≥ 5 L2Y&(L3YIL4Y)&(L5YIL6Y)&(L7YIL8Y) Normalize Inner $\chi^2_Y < 10$ L1XY hit on track with good status Normalized Inner-L1 $\chi^2_Y < 10$ Charge cuts on L1, UTOF, and Inner Tracker: $Q_{L1}-Z > -0.16(Z-3)-0.46$

- -0.6< Q_{UTOF}-Z <1.5
- IQ_{Inner}–ZI < 0.45

Additional L1 charge cut (purity cut):

• $Q_{L1}-Z < 0.65+0.03(Z-5)$

Top-Of-Instrument (TOI) correction

The estimation has been done using Boron, Carbon, Nitrogen, Oxygen and Neon MonteCarlo.

carbon64_20200420V2N_B1215401RAMCKY10COMBUNF0LDT0I_totalQYAN.root
oxygen64_20200420V2N_B1220402RAMCKY10COMBUNF0LD_totalQYAN.root

Purity not implemented still

This is purity for 10 years pass7 CIEMAT ntuples

The purity is above 99% for the three nuclei in the entire rigidity range.

From AMS Nitrogen paper: this residual background is < 5% over the entire rigidity range

Forward Unfolding Factor

Has been estimated using the Matrix from the MonteCarlo.

The response model used for pass7 is not being use here, since a revision of it is needed:

- New reconstruction
- New fitting algorithm

No pass8 public results from Qy still

FUM Fluxes vs MIT

FUM fluxes vs Perugia

Pass7 8.5 years comparison 06/April/2021

11

Bartels with <27 days of data taken

BR number	N° of days		BR number	N° of days				
2426	22		2531	12		2549	0	Empty
2459	24		2532	21		2550	0	Empty
2471	19		2533	6		2551	0	Empty
2472	0	TCCS	2535	2	Decision	2552	15	
2473	3	TCCS	2536	19		2553	22	
2504	24		2537	7		2554	21	
2523	16		2538	19		2555	25	
2524	8		2540	12		2558	25	
2526	3	Decision	2541	0	Empty	2559	24	
2527	24		2542	0	Empty	2560	21	
2529	26		2543	7				
2530	11		2548	17				

Tracker data/<data> correction

- Commissioning, 3 first BR
- Thu Dec 1 16:35:34 UTC 2011 dead 6 X-side ladder 3 L2X, 1 L3X, 1L4X, 1L5X
- Thu May 8 15:04:08 UTC 2014 dead 1 L7Y
- Tue Feb 28 17:10:43 UTC 2017 dead 1 L8Y
- Tue Sep 24 06:27:23 UTC 2019 1 L8Y "revived" after power cut
- Check ELOG for the last 1.5 years (It seems there is no huge jumps)

PickUp-L1 data/<data> correction

- Commissioning, 3 first BR
- Thu Dec 1 16:35:34 UTC 2011 dead 6 X-side ladder 3 L2X, 1 L3X, 1L4X, 1L5X
- Mon Oct 29 09:38:41 UTC 2012 dead 1 VA L1X
- Mon Dec 3 22:02:01 UTC 2018 suddenly low signal on 1 L1X (-810)
- Mon Apr 29 15:21:19 UTC 2019 came back 1 L1X (-810)
- 12/12/2020 we had power cut with had an AMS shutdown sue to failing power on 4B ***not clear
- 17/02/2020 we had some major reconfiguration, maybe with some power cycling ***not clear

Unbiased hit L1 data/<data> correction

- **Commissioning**, **3 first BR**
- Thu Dec 1 16:35:34 UTC 2011 dead 6 X-side ladder 3 L2X, 1 L3X, 1L4X, 1L5X
- Mon Oct 29 09:38:41 UTC 2012 dead 1 VA L1X
- Mon Dec 3 22:02:01 UTC 2018 suddenly low signal on 1 L1X (-810) .
- Mon Apr 29 15:21:19 UTC 2019 came back 1 L1X (-810)
- Check Yi Jia dates 12/12/2020 we had power cut with had an AMS shutdown sue to failing power on 4B ***not clear
- 17/02/2020 we had some major reconfiguration, maybe with some power cycling ***not clear

Pass7 Unbiased hit L1 data/<data> correction

- Commissioning, 3 first BR
- Thu Dec 1 16:35:34 UTC 2011 dead 6 X-side ladder 3 L2X, 1 L3X, 1L4X, 1L5X
- Mon Oct 29 09:38:41 UTC 2012 dead 1 VA L1X
- Mon Dec 3 22:02:01 UTC 2018 suddenly low signal on 1 L1X (-810)
- Mon Apr 29 15:21:19 UTC 2019 came back 1 L1X (-810)
- 12/12/2020 we had power cut with had an AMS shutdown sue to failing power on 4B ***not clear
- 17/02/2020 we had some major reconfiguration, maybe with some power cycling ***not clear

Background Subtraction vs Time

MISSING: Purity vs time

Applied: TOI vs time

The rate is from the specific Bartels rotation

Forward Unfolding vs Time

The flux model for each BR is given by the best-fit flux model obtained from the average flux FUM multiplied by a parametrization of the Φ^{BR}/Φ^{AVG} ratio by a spline allowed to fluctuate only at low rigidities.

This effectively allows to study the solar modulation effects on the unfolding.

Chisquare of model vs time

Bartels inside high solar activity period and vice-versa.

Higher solar activity means lower flux, which means higher unfolding factor value, e.g, less correction.

Fluxes vs Time

Conclusion

- Pass 8 NAIA B, C, N & O fluxes has been presented. The agreement with MIT and PG is good, but some work is still to be done: Purity, Oxygen disagreement, etc.
- Proposal (if Federico agrees) would be to present at least 10 years of this 4 nuclei in the June general meeting, so we have at least that for the conferences.
- We need to have the standard things we had in the past, C/O, B/C+O ratios, the plots with Voyager, etc, at some point. And probably the new favorite plot: The Hysteresis.
- We need to think about this plots and some interpretations, since those questions will arrive at the moment we present these results to Prof. Ting.

Back Up Slides

Beta Efficiency Selection

Denominator

- Standard selection for Inner-L1 with no UTOF and LTOF related cuts.
- Track in fiducial L1+Inner volume.
- Tighter cuts on standalone charges (no beta correction).

Numerator

- Denominator
- β calculated with \geq 3 hits
- $\beta > 0.3$

UTOF and LTOF charge cuts are done separately

Beta Data/MC Correction

Beta Charge Efficiency Selection

Denominator

- Standard selection for Inner-L1, without cuts on UTOF and LTOF charges.
- R_{sec} <= 0.5 GV (no high-R positive second track)

Numerator

- Denominator
- UTOF standard charge cut

Beta Charge Data/MC Correction

Tracker Efficiency Selection

Denominator

- Physics trigger
- β calculated with \geq 3 hits
- $\beta > 0.3$
- $\beta > \beta(1.2xR_{ctf})$
- An unbiased XY hit on L1 with position inside L1 fiducial volume
- TOF in inner Tracker fiducial volume with margin of 4.5 cm
- Unbiased hit on L1 < 9 cm from TOF extrapolation to L1
- Tighter cuts on UTOF, LTOF and UnbiasedL1 charges.

Numerator

- Denominator
- Inner Tracker Y hits ≥ 5
- L2Y&(L3YIL4Y)&(L5YIL6Y)&(L7YIL8Y)
- Track in fiducial Inner-L1 volume
- Norm. χ^2_Y Inner < 10
- $Q_{Inner} > Z 2.5$

Inner Tracker Charge cut is done separately

Tracker Data/MC Correction

Tracker Charge Efficiency Selection

Denominator

- Standard selection without QInner cut
- Tighter cuts on UTOF, LTOF and UnbiasedL1 charges.
- $Q_{Inner} Z > 2.5$

Numerator

- Denominator
- Q_{Inner} standard charge cut

Inner Tracker Charge Data/MC Correction

L1 Unbiased Hit Efficiency Selection

Denominator

- Standard selection excluding L1 related cuts
- Tighter cuts on Q_{UTOF}, Q_{Inner} charges.

Numerator

- Denominator
- Q_{UL1} standard charge cut

L1 Unbiased Hit Data/MC Correction

L1 Hit Association to Track Efficiency Selection

Denominator

- Standard selection excluding L1 related cuts
- $-0.16(Z-3)-0.46 < Q_{UL1}-Z < 0.65+0.03(Z-5)$
- Tighter cuts on UTOF, InnerTrack charges.
- R_{sec} < 0.5 GV (no high-R second track)

Numerator

- Denominator
- L1XY hit on track with good status
- Normalized L1-Inner $\chi^2_{\rm Y}$ < 10
- Normalized L1 $\chi^2_{\rm Y}$ < 10
- Standard L1 charge cuts

MIT people are studying this efficiency. Maybe it would be better to apply a different cut instead of the normalized χ^2_{\perp}

L1 Hit Association to Track Data/MC Correction

From pass7 to pass8 reconstruction, the position matching window for **Pass7 – Old Code - CIEMAT Ntuples** external layer hits have been increased by a factor 5. 0.94 **Pass8 - New Code - NAIA Ntuples** 0.92 0.9 0.9 Efficiency 0.88 Efficiency 0.86 0.84 0.85 0.82 Data Data MC 0.8 MC ı**.**∿4 χ²/n.d.f.=0.788 1.05 1.04 1.02 Data/MC 1.03 Data/MC 1.02 0.98 1.0 K05: χ^2 /NDF=1.534 0.96 0.99 10² 10 10² R[GV] 10 **Rigidity** [GV]

Raw True Acceptance

R[GV]

Raw True Acceptance

Pass7 – Old Code - CIEMAT Ntuples

Raw Folded Acceptance

Weighting the MonteCarlo with a combination of MIT 10 years fluxes and Galprop, we can obtain a folded acceptance.

Boron 10 years vs MIT

MIT is pass7 data, no pass8 results are public from Qi Yan

Carbon 10 years vs MIT

MIT is pass7 data, no pass8 results are public from Qi Yan

Oxygen 10 years vs MIT

MIT is pass7 data, no pass8 results are public from Qi Yan

Maybe add here a plot of the old comparison Since we had this problem before

Forward vs Folded Acceptance methods

Folded acceptance method is just the first iteration Forward unfolding for Oxygen need some extra tunning

Pass8 updates from Qi Yan presentation

Not only that, the pass8 reconstruction (V6) is using more advanced track finding algorithm than pass7. Here lists a number of other updates:

a) Better tracker Cluster (Hits) reconstruction:

fix missing Clusters (Hits) issue existing in all previous pass: <=pass7

- b) More powerful inner track candidate builder together with more robust quality estimator
- c) More efficient noisy Hit filter
- d) New missing Hit refinding algorithm
- e) Higher external hit (tracker L1 or L9) picking-up efficiency
- f) Including all latest track fitting algorithms: Choutko (with bugs fixed), Kalman, GBL, ... and all alignments: V5 (Inner/PG, external layers/PG+CIEMAT), V6 (Inner, external layers)
- g) New algorithm of tagging primary track (particle)

Qinner charge distribution

Loose cut on Charge is needed.

Vertical tracks producing gamma rays most probably.

It is a tracker inefficiency, not a tracker charge one, that is why we put it in the tracker numerator.

Trigger Data/MC Correction

Standard selection with trigger as a last cut.

