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AMS SUBDETECTORS

Particles and nuclei are 
defined by their charge (Z) 
and energy (E ~ P) or 
rigidity R=P/Z

Both quantities are 
measured redundantly and 
independently by AMS 
sub-detectors: Tracker, 
TOF, TRD, ECAL, RICH 
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Antimatter particles in cosmic rays are 
unique messengers for the search of 
dark matter annihilation signals in the 
Galaxy or the presents of large domains 
of antimatter in the universe.  

AMS collaboration has publish the 
results of the positrons, anti-Protons. 
Now we need to search for heavier 
antimatters in the cosmic rays with 
AMS. Antihelium is a very interesting 
topic since till now we have no clear 
evidence that we have antihelium in 
cosmic rays. 



• Step1: Selection of events with charge compatible to helium/anti-helium in good 
quality. From the propagation theory of the cosmic ray, anti-helium is unlikely to be 
produced in the cosmic rays, that means, even there are some, should be very small 
amount. That make the most of the events with negative charge are backgrounds. 
Anti-helium should share the similar distribution behaviour of most variables with 
helium, that make the signals.  

• Step2: Study each variables possibly can be used to discriminate signals from 
backgrounds, both in Monte Carlo (MC) and the flight data. Select variables which 
have a large difference behaviour in signals and backgrounds.  

• Step3: Employ the variables found in the second step, and perform machine learning 
with TMVA integrated in ROOT. Train the MC data to get the classifier, apply to the 
flight data, find the most efficient cut, and get the final result of the anti-helium 
events, and also significance of the analysis.

This analysis 
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Step 1

• Selection of events with charge compatible to helium/anti-
helium in good quality.
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• Ntuple:   
/storage/gpfs_ams/ams/groups/AMS-Italy/ntuples/v1.0.0/ISS.B1236/
pass8 
 
from 1305853512.root  to 1635855691.root


• Rigidity: GBL

20 May 2011 —> 2 Nov 2021 

Data used for the analysis
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Extend to 1668126894 
11 November 2022



Trigger:  
HasPhysicsTrigger; 

RTI Selections; 

TOF: 
Beta>0.3; 
Good hits on Upper TOF: GoodPathlength(0b0011); 
Charge in TOF (charge - 0.75f, Max); 
Charge in Upper TOF (charge - 0.5f, charge + 1.0f); 
Charge in Lower TOF (charge - 0.5f, charge + 1.0f); 
TofPlus.Chi2Coo < 10.0f 
TofPlus.Chi2Time < 10.0f

Inner Tracker:  
fabs(R)>GeoCutoff; 
fabs(R)>2.5; 
Fiducial volume in inner tracker; 
Hits on Y side = 7; 
Hits ChiSquare < 10; 
Hits ChiSquare_X < 10; 
Hits ChiSquare_Y < 10; 
Charge on each layer (charge - 0.4f, charge + 0.6f); 
ChargeRMS<0.55; 
ChargeRMS/InnerCharge < 0.3; 
f_InvRigErrR<=10; 
fGet_PartialRigidity_SameSignNum>=3; 
fGet_PartialRigidity_Rigidity_MaxDiffInvR<=20;

7

Selections:



From the propagation theory of the cosmic ray, antihelium is unlikely to be 
produced in the cosmic rays, that means, even there are some, should be very 
small amount. That makes the search for antihelium much more difficult.  
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The background is mostly from the particle scattering in the detecter. Due to the 
scattering, some of the helium events are reconstructed with negative charge. 
In this analysis, the most challenge job is to characterise the background and 
find discriminating variables. 9



Step 2

• Study each variables possibly can be used to discriminate 
signals from backgrounds, both in Monte Carlo (MC) and the 
flight data. Select variables which have a large difference 
behaviour in signals and backgrounds. 
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For example, we are examining several variables that are closely related to the equality 
and properties of the trajectory reconstructed in the inner tracker of the AMS.  
These variables are defined from the very beginning to be as sensitive as possible to 
particle scattering and resolution effects in the inner tracker.
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For example, we are examining several variables that are closely related to the equality 
and properties of the trajectory reconstructed in the inner tracker of the AMS.  
These variables are defined from the very beginning to be as sensitive as possible to 
particle scattering and resolution effects in the inner tracker.
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For example, we are examining several variables that are closely related to the equality 
and properties of the trajectory reconstructed in the inner tracker of the AMS.  
These variables are defined from the very beginning to be as sensitive as possible to 
particle scattering and resolution effects in the inner tracker.
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For example, we are examining several variables that are closely related to the equality 
and properties of the trajectory reconstructed in the inner tracker of the AMS.  
These variables are defined from the very beginning to be as sensitive as possible to 
particle scattering and resolution effects in the inner tracker.
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PartialTrChiSq: Normalized chi-square obtained from a fit where a given layer 'i' was excluded. 

https://naia-docs.web.cern.ch/naia-docs/v1.0.0/classNAIA_1_1TrTrackPlusData.html#ab2ba485731a1a43c81d8772d90562b0f
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For example, we are examining several variables that are closely related to the equality 
and properties of the trajectory reconstructed in the inner tracker of the AMS.  
These variables are defined from the very beginning to be as sensitive as possible to 
particle scattering and resolution effects in the inner tracker.
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PartialRigidity: Rigidity obtained from a fit where the hit on an a given layer 'i' is not considered. 

https://naia-docs.web.cern.ch/naia-docs/v1.0.0/classNAIA_1_1TrTrackPlusData.html#aa9cbdcd477bf21cae2e6f8b795b4c9a6


SameSignPatialRNum

PartialRigidity: Rigidity obtained 
from a fit where the hit on a 
given layer 'i' is not considered. 
We have 7 PartialRigidity in 
total, considering 7 layers of the 
inner tracker.  
 
SameSignPatialRNum: the total 
count of the case that 
PartialRigidity have the same 
sign as the general 
reconstructed rigidity. 
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https://naia-docs.web.cern.ch/naia-docs/v1.0.0/classNAIA_1_1TrTrackPlusData.html#aa9cbdcd477bf21cae2e6f8b795b4c9a6
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For example, we are examining several variables that are closely related to the equality 
and properties of the trajectory reconstructed in the inner tracker of the AMS.  
These variables are defined from the very beginning to be as sensitive as possible to 
particle scattering and resolution effects in the inner tracker.
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For example, we are examining several variables that are closely related to the equality 
and properties of the trajectory reconstructed in the inner tracker of the AMS.  
These variables are defined from the very beginning to be as sensitive as possible to 
particle scattering and resolution effects in the inner tracker.
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InvRigErr: Error on the deflection ( = 1 / rigidity) estimation, for each available fit and span.

https://naia-docs.web.cern.ch/naia-docs/v1.0.0/classNAIA_1_1TrTrackPlusData.html#a02bf2547c34a9bb04d1b13feec16c2a2


Step 3

• Employ the variables found in the second step, and perform 
machine learning with TMVA integrated in ROOT. Train the 
MC data to get the classifier, apply to the flight data, find the 
most efficient cut, and get the final result of the anti-helium 
events, and also significance of the analysis. 
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• Machine learning with TMVA

20



0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5
BDT response

0

2

4

6

8

10

12dx / 
(1

/N
) d

N

Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.615 (0.763)

U
/O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

TMVA overtraining check for classifier: BDT

• Machine learning with TMVA

21



0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5
Cut value applied on BDT output

0

0.2

0.4

0.6

0.8

1

Ef
fic

ie
nc

y 
(P

ur
ity

)
Signal efficiency
Background efficiency

Signal purity
Signal efficiency*purity

S+BS/

For 200 signal and 2000 background
 isS+Bevents the maximum S/

13.7638 when cutting at 0.2664

Cut efficiencies and optimal cut value

0

2

4

6

8

10

12

14

Si
gn

ifi
ca

nc
e

• Machine learning with TMVA
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Classifier_BDT> 0.2664
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Classifier_BDT> 0.2664
2.5<Mass<5.5
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16 events are selected
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Conclusion: 

1: No candidates of antihelium from 2.5 GV to 5 GV is selected.
2: Rich can provide more precise Beta measurement in rigidity 
range 5 GV to 30 GV.  Searching antihelium  candidates in this 
range is on going.
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Besides the data analysis, I was also working on the data taking operation of AMS, with 
regularly taking the “TEE” shifts, which monitor the detector performances and health status at 
the AMS POCC (payload operation control center) 24 hours a day and 7 days a week.  
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NAIA Control Plots
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End

51


