

Finanziato dall'Unione europea **NextGenerationFU**

On-off intermittency in a host-parasitoid model with a deterministic chaotic driver

Angela Monti

Istituto per le Applicazioni del Calcolo 'M. Picone', CNR, Bari

Workshop MathAIEOapp

Bari, 5-7 July 2023

Outline

- **1** The Beddington-Free-Lawton model
	- \blacktriangleright Fixed points
	- \triangleright Stability & bifurcation analysis
- 2 Types of intermittency
	- ▶ Chaotic intermittency
	- ▶ On-off intermittency
- Deterministic chaotic driver
	- \triangleright δ , grazing parameter
	- \blacktriangleright r, host growth rate

Joint work with:

- **· Deborah Lacitignola** (Università di Cassino e del Lazio Meridionale)
- **Fasma Diele** (IAC-CNR, Bari)

$$
\begin{cases}\nN_{t+1} = \delta N_t \exp\left[r\left(1 - \frac{N_t}{K}\right) - a P_t\right] \\
P_{t+1} = b N_t \left[1 - \exp\left(-a P_t\right)\right]\n\end{cases}
$$

with N host and P parasitoid biomass, δ grazing intensity, r host growth rate, K carrying capacity, b parasitoid growth rate, a searching efficiency. Set $Y = aP$ and $X = abN$ and $k = abK$

$$
\begin{cases}\nX_{t+1} = \delta X_t \exp\left[r\left(1 - \frac{X_t}{k}\right) - Y_t\right] \\
Y_{t+1} = X_t \left[1 - \exp\left(-Y_t\right)\right]\n\end{cases}
$$

J. Beddington, C. Free, J. Lawton, The Journal of Animal Ecology (1976)

- T. Azizi, International Journal of Modern Nonlinear Theory and Application (2020)
- G. Vissio, A. Provenzale, Journal of Theoretical Biology (2022)

Fixed points

Set
$$
\rho := r + \log(\delta)
$$
 and $k_r := k/r$

- extinction $P_0 = (0, 0)$
- free-parasitoid $P_1=(\rho\,k_{r},0)$
- $\mathsf{coexistence}\;P^*=(X^*,Y^*)$

Let J be the Jacobian matrix evaluated at the fixed point P .

$$
\eta(t) = \widetilde{J}\eta(t-1) \implies \eta(t) = \widetilde{J}^t \eta(0)
$$

Stability & bifurcation

$$
|\lambda_i(\widetilde{J})| < 1 \text{ for } i = 1, 2
$$

- **saddle-node**, when \overline{J} has an eigenvalue equal to 1;
- **period-doubling**, when \widetilde{J} has an eigenvalue equal to -1 :
- Neimark-Sacker, when \widetilde{J} has two complex conjugate eigenvalues on the unit circle.

Chaotic intermittency

Switching behavior between periodic, quasi periodic and chaotic regimes.

- Type $I \rightarrow$ saddle-node:
- Type $II \rightarrow$ period-doubling;
- \bullet Type III \rightarrow Neimark-Sacker.

On-off intermittency

The alternation between laminar (off) phases and sudden bursts (on phases), generated by the temporally-varying stability of an invariant set.

Y. Pomeau, P. Manneville, Communications in Mathematical Physics (1980)

On-off intermittency \rightarrow stochastic drivers

Deterministic driving process

$$
\delta_t = d + (D - d) \epsilon_t \text{ , for all } t \ge 0
$$

where $0 < d \leq D$.

$$
\begin{cases}\nX_{t+1} = \delta_t X_t \exp\left[r\left(1 - \frac{X_t}{k}\right) - Y_t\right] \\
Y_{t+1} = X_t \left[1 - \exp\left(-Y_t\right)\right] \\
\epsilon_{t+1} = s \epsilon_t \left(1 - \epsilon_t\right)\n\end{cases}
$$

Logistic map fixed points $\rightarrow \epsilon^{0}=0, \epsilon^{(\mathfrak{s})}=1-\frac{1}{\tau}$ $\frac{1}{s} < 1$

N. Platt, E. Spiegel, C. Tresser, Physical Review Letters (1993)

o Extinction

$$
P_I^{(0)}=(0,0,\epsilon^{(1)})
$$

o free-parasitoid

$$
P_I^{(1)}=(X_I^{(1)},0,\epsilon^{(I)})
$$

where
$$
X_l^{(1)} = \frac{k}{r} \rho_r(\epsilon^{(l)})
$$
 and $\rho_r(\epsilon^{(l)}) := r + \log(\delta(\epsilon^{(l)}))$

o coexistence

$$
P_l^* = \left(X_l^*, Y_l^*, \epsilon^{(l)}\right)
$$

where $(X_{l}^{\ast}, Y_{l}^{\ast})$ are the positive solutions of the system

$$
\begin{cases} X_I^* = \frac{k}{r} \left(\rho_r(\epsilon^{(I)}) - Y_I^* \right) \\ Y_I^* = X_I^* \left[1 - \exp\left(-Y_I^* \right) \right] \end{cases}
$$

 $l = 0, s.$

$$
P_I^{(0)}
$$
 Stability analysis

Theorem

 \mathbf{D} The extinction fixed point $P_0^{(0)}=(0,0,0)$ is asymptotically stable if

$$
\begin{cases} 0 < s < 1 \\ 0 < d < \exp(-r) \end{cases}
$$

 $\mathbf{2}$ The extinction fixed point $P_{\mathsf{s}}^{(0)} = (0,0,\epsilon^{(\mathsf{s})})$ is asymptotically stable if

$$
\begin{cases} 1 < s < 3 \\ 0 \leq \delta(\epsilon^{(s)}) < \exp(-r) \end{cases}
$$

Logistic map: bifurcation diagram

- saddle-node bifurcation at $\bar{s} = 3.82843$;
- **period doubling** bifurcation at $\tilde{s} = 3.8415$
- R. M. May, Nature (1976)

On-off intermittency \rightarrow "blowout bifurcation"

Response system: determines the number of invariant subspaces (quiescent phases)

$$
S = \{(X, Y, \epsilon) : X = Y = 0\}
$$

Drive system: determines the dynamics of the chaotic attractor in the invariant subspace

$$
f(\epsilon)=s\,\epsilon_t\,(1-\epsilon_t)
$$

Y. Nagai, Y.C. Lai, Physical Review E (1997)

Transverse Lyapunov exponent

Question: The chaotic attractor in S is also an attractor in the full 3D phase space?

Answer: It depends on the sign of the largest transverse Lyapunov exponent ℓ (ℓ)) \sim

$$
\mu_{t+1} = J_t \mu_t = \begin{pmatrix} \exp(\rho_r(\epsilon_t)) & 0 \\ 0 & 0 \end{pmatrix} \mu_t
$$

$$
\Lambda_{\mathcal{T}} = \lim_{t \to \infty} \frac{1}{t} \ln \left(\max_{\|\mu_0\| \neq 0} \frac{\|\mu_t\|}{\|\mu_0\|} \right) = \lim_{t \to \infty} \frac{1}{t} \ln \|\prod_{i=0}^{t-1} J_i\|
$$

$$
= \lim_{t \to \infty} \frac{1}{t} \ln \sigma_{\text{max}} \left(\prod_{i=0}^{t-1} J_i \right) = \lim_{t \to \infty} \frac{1}{t} \ln \left| \prod_{i=0}^{t-1} \exp(\rho_r(\epsilon_i)) \right|
$$

Q. Zhou, Z. Chen, Z. Yuan, Physica A: Statistical Mechanics and its Applications (2007)

Transverse Lyapunov exponent

- $\bullet \Lambda_{\mathcal{T}}$ < 0 \to the chaotic attractor in S is also an attractor in the 3D space;
- $\bullet \Lambda_{\tau} > 0 \rightarrow$ trajectories in the neighborhood of S are repelled away from it.

Blowout bifurcations $\rightarrow \Lambda_T$ moves from negative to slightly positive values.

The onset of on-off intermittency

Figure: Intermittent host dynamics for $s = 3.82825$ (left) and $s = 3.865$ (right).

Statistical tool

The kurtosis of the time series

- J . Heagy, N. Platt, S. Hammel, Physical Review E (1994)
- C. Toniolo, A. Provenzale, E. A. Spiegel, Physical Review E (2002)
- **S.** Metta, A. Provenzale, E. A. Spiegel, Chaos, Solitons & Fractals (2010)

Kurtosis & critical curve

where $0 <$

Deterministic driving process

$$
r_t = r_{min} + (R - r_{min}) \epsilon_t \text{ , for all } t \ge 0
$$

$$
r_{min} \le R
$$

$$
\begin{cases}\nX_{t+1} = X_t \exp\left[r_t \left(1 - \frac{X_t}{k}\right) - Y_t\right] \\
Y_{t+1} = X_t \left[1 - \exp\left(-Y_t\right)\right] \\
\epsilon_{t+1} = s \epsilon_t \left(1 - \epsilon_t\right)\n\end{cases}
$$

Fixed points

• Extinction

$$
P_I^{(0)}=(0,0,\epsilon^{(I)})
$$

o free-parasitoid

$$
P_I^{(1)}=(k,0,\epsilon^{(I)})
$$

o coexistence

$$
P_I^* = \left(X_I^*, Y_I^*, \epsilon^{(I)}\right)
$$

where $(X_{l}^{\ast}, Y_{l}^{\ast})$ are the positive solutions of the system

$$
\begin{cases} X_i^* = k - \frac{k}{r(\epsilon^{(l)})} Y_i^* \\ Y_i^* = X_i^* [1 - \exp(-Y_i^*)] \end{cases}
$$

 $l = 0, s.$

$$
P_I^{(1)}
$$
 Stability analysis

Theorem

 \mathbf{D} The free-parasitoid fixed point $P_0^{(1)} = (k,0,0)$ is asymptotically stable if $\sqrt{ }$

$$
\begin{cases} 0 < s < 1 \\ 0 < r_{\text{min}} < 2 \\ k < 1 \end{cases}
$$

 \bullet The free-parasitoid fixed point $P^{(1)}_s=(k,0,\epsilon^{(s)})$ is asymptotically stable if

$$
\begin{cases} 1 < s < 3 \\ 0 \leq r(\epsilon^{(s)}) < 2 \\ k < 1 \end{cases}
$$

Transverse Lyapunov exponent

Invariant subspace: $S_1 = \{(X, Y, \epsilon) : X = k, Y = 0\}$

$$
\mu_{t+1} = J_t^{(1)} \mu_t = \begin{pmatrix} 1 - r(\epsilon_t) & -k \\ 0 & k \end{pmatrix} \mu_t
$$

$$
\Lambda_T = \lim_{t \to \infty} \frac{1}{t} \ln \sigma_{\text{max}} \left(\prod_{i=0}^{t-1} J_i^{(1)} \right)
$$

$$
\tilde{\Lambda}_T = \lim_{t \to \infty} \frac{1}{t} \ln \max_i \left| \lambda_i \left(\prod_{i=0}^{t-1} J_i^{(1)} \right) \right|
$$

Suppose $0 < k < r_{min} - 1 \leq 1$,

$$
\tilde{\Lambda}_T = \lim_{t \to \infty} \frac{1}{t} \ln \prod_{i=0}^{t-1} (r(\epsilon_i) - 1) = \lim_{t \to \infty} \frac{1}{t} \sum_{i=0}^{t-1} \ln (r(\epsilon_i) - 1).
$$

Reactivity of a fixed point

Discrete map $x(t + 1) = f(x(t))$

$$
\eta(t) = J_{\overline{\mathbf{x}}}^{(t-1)} \eta(t-1) = \ldots = \prod_{i=0}^{t-1} J_{\overline{\mathbf{x}}}^{(i)} \eta(0) = H_{t,\overline{\mathbf{x}}} \eta(0)
$$

Amplification envelope $\phi(t):=\max_{\|\eta(0)\|\neq {\bf 0}}\frac{\|\eta(t)\|}{\|\eta(0)\|}$ $\frac{\|H(t, \mathbf{v})\|}{\|H(t, \mathbf{x})\|} = \|H(t, \mathbf{x})\|$

$$
\phi(t) = \phi_2(t) := \sqrt{\psi(H_{t,\overline{x}}^{\mathsf{T}} H_{t,\overline{x}})} = \sigma_{\mathsf{max}}(H_{t,\overline{x}})
$$

Resilience $L_{1,\overline{\mathbf{x}}} := \lim_{t \to \infty} \frac{1}{t}$ $\frac{1}{t}$ In $\sigma_{max}(H_{t,\overline{x}})$ **Reactivity** $\nu := \log \phi_2(1) = \ln \left[\sigma_{\textit{max}}(J_{\overline{\textbf{x}}}^{(0)} \right]$ $\frac{1}{x}$ ($\binom{0}{y}$ $\nu > 0 \implies \sigma_{max}(J_{\overline{x}}^{(0)})$ $(\frac{x^{(0)}}{x}) > 1 \implies \overline{x}$ reactive

H. Caswell, M. G. Neubert, Journal of Difference Equations and Applications \bullet (2005)

Angela Monti **[Intermittency in a host-parasitoid model](#page-0-0)** 20 / 26

Reactivity of the invariant manifold

$$
\begin{cases} X_{t+1} = X_t \exp\left[r(\epsilon_t) \left(1 - \frac{X_t}{k}\right) - Y_t\right] \\ Y_{t+1} = X_t \left[1 - \exp\left(-Y_t\right)\right] \end{cases}
$$

Stability of $P_1 = (k, 0) \rightarrow S_1 = \{(X, Y, \epsilon) : X = k, Y = 0\}$ **Reactivity** of $P_1=(k,0)\rightarrow \log|\sigma_{max}(J_0^{(1)})|$ $\binom{1}{0}$ $| > 0$

$$
J_0^{(1)} = \left(\begin{array}{cc} 1 - r(\epsilon_0) & -k \\ & 0 & k \end{array}\right) \rightarrow \text{ depends on } \epsilon_0
$$

"Average" reactivity $\lim_{t\to\infty}\frac{1}{t}$ $\frac{1}{t}$ log $|\sigma_{max}(J_t^{(1)})$ $\vert_t^{(1)}\rangle\vert > 0.$

S_1 stability & reactivity

Figure: Kurtosis values for $s = 3.82825$ and $k = 0.1$ (left), $k = 0.3$ (right). Red: stability curve. Green: reactivity curve.

Other parameters: $r_{min} = 1.16$, $k = 0.1$, $s = 3.82825$.

Conclusions

- **•** On-off intermittency in a **deterministic scenario**
	- \triangleright δ , grazing parameter
	- \blacktriangleright r, growth rate
- \bullet The onset of on-off intermittency in the reactivity region of S_1 .

Work in progress

• On-off intermittency in a randomic scenario

Future work

The transmission of intermittency in host-parasitoid coupled systems.

References

- T. Azizi, Local stability analysis and bifurcations of a discrete-time host-parasitoid model, International Journal of Modern Nonlinear Theory and Application (2020)
- J. Beddington, C. Free, J. Lawton, Concepts of stability and resilience in predator-prey models, The Journal of Animal Ecology (1976)
- **J.** Heagy, N. Platt, S. Hammel, Characterization of on-off intermittency, Physical Review E (1994)
- D. Lacitignola, F. Diele, A. Monti, On-off intermittency in a host-parasitoid model with a deterministic chaotic driver (in preparation)
- S. Metta, A. Provenzale, E. A. Spiegel, On–off intermittency and coherent bursting in stochastically-driven coupled maps, Chaos, Solitons & Fractals (2010)
- A. Monti, F.Diele, C.Marangi, A. Provenzale, The onset of intermittency in the Beddington-Free-Lawton model (in preparation)
- **•** Y. Nagai, Y.C. Lai, Characterization of blowout bifurcation by unstable periodic orbits, Physical Review E (1997)
- Y. Pomeau, P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Communications in Mathematical Physics (1980)
- C. Toniolo, A. Provenzale, E. A. Spiegel, Signature of on-off intermittency in measured signals, Physical Review E (2002)
- G. Vissio, A. Provenzale, On-off intermittency and irruptions in host- parasitoid dynamics, Journal of Theoretical Biology (2022)
- Q. Zhou, Z. Chen, Z. Yuan, On–off intermittency in continuum systems driven by Lorenz system, Physica A: Statistical Mechanics and its Applications (2007)

Thank you for your attention!

a.monti@ba.iac.cnr.it