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GW detector data

Time series sequences… noisy time series with low amplitude GW signal 
buried in
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Gravitational Wave Transient signal sources

3

Compact binary coalescences Core collapse Supernovae

Credit
LIGO/Caltech/MIT/R. Hurt (IPAC) ESA/XMM-Newton & NASA/Chandra (X-ray); 

NASA/WISE/Spitzer (Infrared)



Gravitational Wave Transient signals

CBC signals CCSN signals
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Data representations

Time-domain Frequency-domain

Time-frequency-domain Wavelet-domain 5



Detector Noise
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Broadband

Glitches

Gravity Spy, Zevin et al (2017)  https://www.zooniverse.org/projects/zooniverse/gravity-spy

● Thermal noise
● Seismic noise
● Electromagnetic noise
● Control noise
● Environmental noise
● Laser noise
● ...

https://www.zooniverse.org/projects/zooniverse/gravity-spy
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The data analysis workflow



 How Machine Learning can help

Data conditioning

● Identify Non linear noise 
coupling

● Use Deep Learning to remove 
noise

● Extract useful features to 
clean data

Signal Detection/Classification/PE

● A lot of fake signals due to noise
● GW signal classification
● Fast alert system
● Manage parameter estimation
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B P Abbott et al 2020 
Class. Quantum Grav. 37 
055002

Area where 
ML can help

Machine Learning 
everywhere

The data analysis workflow and ML



ML application 
to GW transient 

signals
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CCSN and CBC

 



• Waveform depends on progenitor star
• Different emission mechanisms (Proto-neutron 

star oscillation, Standing Accretion Shock 
Instability (SASI),..)

• Largely Stochastic
• Best waveform models from computationally 

expensive 3D simulations
• Different simulation models
• Rare (~100 yrs in Milky Way)

Need an alternative to matched filter approach

Ott et al. (2017) 

GWs from Core Collapse Supernovae
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• Andresen s11: Low amplitude, non-exploding, peak emission at 
lower frequencies

• Radice s13: Non-exploding, lower amplitudes
 

• Radice s25: Late explosion time, standing accretion shock 
instability (SASI), high peak frequency

• Powell s18: High peak frequency, exploding model

• Powell He3.5: ultra-stripped helium star, high peak frequency, 
exploding model

Core-Collapse Supernovae models
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Iess, Cuoco, Morawski, Powell, 
https://doi.org/10.1088/2632-2153/ab7d31

https://doi.org/10.1088/2632-2153/ab7d31


SINE GAUSSIAN & SCATTERED LIGHT 
GLITCHES

• Distances: 
VO3 0.01 kpc to 10 kpc
ET 0.1 kpc to 1000 kpc 

• Random sky localization
• Large SNR range Schutz (2011)

BACKGROUND STRAIN :  simulated data sampled at 
4096 Hz built from VO3 and ET projected sensitivities 

5/13

MDC and CCSN GW simulations
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STRAIN WAVEFORMS

+ RESAMPLING, 
FILTERING

MACHINE-LEARNING 
CLASSIFIER

GW SIGNAL TYPE

GLITCH NOISE TYPE
TRAINING

WHITENING & TRIGGER 
GENERATION  

(WDF)

Pipeline Workflow
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• Train, Validation, Test sets: 60%, 10%, 30%
• 3 or 4 Convolutional layers
• Activation function f: ReLU
• Adam optimizer, learning rate α = 0.001, decay rate of 

0.066667 
• Early stopping
• Batch Size: 64 or 128
• Loss function: Categorical-cross entropy

Dataset: chunks of 3 hr 
data with 1000 injections/h

GPU: Tesla k40

Neural Network architecture
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1D CNN 2D CNN

ET

VO3

• Train on all CCSNe 
waveforms and glitches.

• Test on all.

TRAINED 
CNN MODEL

Test 
samples

SIGNAL GLITCH

• Training time: ~ 30 min

Binary Classification

Alberto Iess et al 2020 Mach. Learn.: Sci. Technol. 1 025014 16



ET, MERGED 1D & 2D CNN

• Train on all  (4 CCSNe 
waveform models + glitches).

• Test on all.

TRAINED 
CNN MODEL

Test 
samples

he3.5 Sine 
gauss.

s18 s11 s13 s25 Scatt. 
light

COMPLEX 
TASK

LONGER TRAINING (> 1 
hr)

MultiLabel classification
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• 44 segments (4096s per segment) from O2 
science run.

• Added m39, y20, s18np models (Powell, 
Mueller 2020).

• Fixed distance of 1 kpc. 
• Added LSTM Networks, suited for time series 

data.
• Added Three ITF classification.

• Powell s18np: differs from s18 since simulation does 
not include perturbations from the convective 
oxygen shell. As a result, this model develops strong 
SASI after collapse.
 

• Powell y20: non-rotating, 20 solar mass Wolf-Rayet 
star with solar metallicity.

• Powell m39: rapidly rotating Wolf-Rayet star with an 
initial helium star mass of 39 solar masses

s18np

y20

m39

Powell and  Müller (2020)

Test on O2 real Data
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• Noise PSD is non stationary.
• Multiple Glitch Families.
• SNR distribution is affected by ITF antenna pattern.
• Dataset: ~15000 samples.
• Imbalanced Dataset due to different model amplitudes.

CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs
A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  19

Real noise from O2 science run



MULTILABEL CLASSIFICATION ON REAL O2 NOISE (SINGLE ITF, LIGO H1, DIFFERENT 
MODELS)

• Bi-LSTM, 2 recurrent layers
• ~10 ms/sample 
• Best weights over 100 epochs

• 1D-CNN, 4 convolutional layers
• ~2 ms/sample 
• Best weights over 20 epochs

• 2D-CNN, 4 convolutional layers
• ~3 ms/sample 
• Best weights over 20 epochs

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  20

Multi-label task



• Dataset breakdown:
675 noise, 329 s18p, 491 s18np, 115 he3.5, 
1940 m39, 1139 y20, 76 s13, 1557 s25.

• Input to NNs have additional dimension (ITF) 

L
1

H
1

V
1

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, A&A 669, A42 (2023)  
21

Analysis on 3 detectors and merged 
models on O2 data



Anomaly Detection in Gravitational Waves data 
using Convolutional AutoEncoders for CBC signals

Example for detection/classification for CBC signals

Create a deep learning pipeline allowing detection of anomalies defined in terms 
of transient signals: gravitational waves as well as glitches.

Additionally: Consider reconstruction of the signal for the found anomalies.
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Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 
https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

Auto-encoder workflow



Model 
input

Model 
prediction
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Auto-encoder workflow



O2 data - MSE Distributions

 

24



25Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 
https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

GW150914
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Review paper: Enhancing gravitational-wave science with machine learning  Elena Cuoco et al 
2021 Mach. Learn.: Sci. Technol. 2 011002…We are preparing the updated version

Glitches 
classification

GW signal 
detection

Parameter 
estimation

Sky 
localization

Easy access 
information Data quality Waveform 

modelling …

Machine learning applications in LVK: 
a long list



Multi Modal Machine Learning for 
Astrophysics
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Cuoco, E. et al. Computational 
challenges for multimodal astrophysics. 
Nat Comput Sci 2, 479–485 (2022). 
https://doi.org/10.1038/s43588-022-00
288-z (https://rdcu.be/cT7OQ)

https://doi.org/10.1038/s43588-022-00288-z
https://doi.org/10.1038/s43588-022-00288-z
https://doi.org/10.1038/s43588-022-00288-z


Case study: Application to GW-GRB signals

credits: LIGO/VIRGO collaboration; 
Abbott et al. 2017, ApJ, 848, 13

[Credit: NSF/LIGO/Sonoma State University/A. Simonnet] 
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Goal of the project

We want to estimate the redshift (z) of GRBs associated with BNS 

mergers

● We have a bunch of simulated GRBs, and we assume that we know z 

only for a fraction of them;

● We train the pipeline on the GRBs with known z;

● We predict z using joint GRB and GW analysis
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Simulations: what we simulated

Multi-messenger signals from BNS mergers in 3 steps:

● Generation of a population of BNS merging systems

● Simulation of the associated GW signals and GW data for a detector 
such as the Einstein Telescope

● Simulation of the associated short GRB light curve as observed by a 
Fermi-like detector

Cuoco, E.; Patricelli, B.; Iess, A.; Morawski, F. Multimodal Analysis of Gravitational Wave Signals and Gamma-Ray 
Bursts from Binary Neutron Star Mergers. Universe 2021, 7, 394. https://doi.org/10.3390/universe7110394 
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Binary Neutron Star population

● NS spins: aligned; maximum value: 0.05

● Focus on sources giving rise to an on-axis 
GRB -> maximum inclination of the BNS  
system fixed to 8 deg NS masses: 
uniform distribution between 1 and 2.5 
M

⊙

● BNS Distance: uniform distribution 
between 1 and 500 Mpc

https://doi.org/10.3390/universe7110394 
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https://doi.org/10.3390/universe7110394 
Hild et al. 2011, Class. Quantum Grav., 28 
094013

GW detector noise: Einstein Telescope



● We assume that all BNS mergers are 
associated with a short GRB

● We simulate the GRB afterglow 
gamma-ray light curves following the 
approach in Patricelli et al. 2016:

○ GRB 090510 as a prototype
○ light curve corrected to take into 

account 
■ the distance of the sources 

with respect to GRB 090510
■ a range of possible GRB 

isotropic energies

Patricelli et al. 2016, JCAP, 11, 56
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Electromagnetic simulations



Wavelet transform using: OverLordGoldDragon, ssqueezepy, 2020. GitHub repository, 
https://github.com/OverLordGoldDragon/ssqueezepy/. DOI: 10.5281/zenodo.5080514

https://doi.org/10.3390/universe7110394 

Simulated data set
○ Sampling frequency: 2048 Hz 
○ Number of BNS-GRB events: 3000
○ Train/Validation/Test set: 70%, 10%, 

20%
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Data Transformation: Time-series or images

https://github.com/OverLordGoldDragon/ssqueezepy/
https://github.com/OverLordGoldDragon/ssqueezepy/


2-D CNN for GW time-frequency:
- 5 convolutional layers with (3,3) kernels and 

64, 32, 16, 16, 32 filters.
- Max pooling (2,2) after convolutional layer

1-D CNN for GRB light curve:
- 3 convolutional layers with kernels 5, 3, 3 

and 80, 40, 40 filters
- Max pooling of 2 after convolutional layer

Flattening + Concatenation  + FC 
layer with linear activation

- ReLU activation function in CNN
- Adam optimizer
- batch size: 16
- Number of training epochs: 100https://doi.org/10.3390/universe7110394 
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The deep network



https://doi.org/10.3390/universe7110394 36

MMML for GW-GRB results



Wavefier: a prototype for real time 
transient classifier 
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https://wavefier.gitlab.io/

◎ Setup a prototype for a real 
time pipeline for the 
detection of transient 
signals and their 
automatic classification 

◎ European Open Science 
Cloud (EOSC) proof of 
concept

E.Cuoco, A. Iess, Trust-IT Service company



Wavefier Dashboard
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E.Cuoco, A. Iess, Trust-IT Service company



On-going Test Case: Multi-messenger Data

Different Data Formats

● Gravitational waves 
(.gwf)

● Gamma ray bursts 
(.fits)

● Neutrino (.fits)

Kafka

 MULTI-MESSENGER 

ANALYSIS (ML)

SINGLE MESSENGER
ANALYSIS 

Separate Analysis Pipelines

● Wavelet Detection Filter (GW) —> integration in 
ESCAPE VRE

● Analysis pipeline for Gamma ray
● Neutrino pipeline
● MM pipeline

Collaboration of Astronomical Communities

39E.Cuoco, A. Iess, Trust-IT Service company



Thank you

twitter: @elenacuoco
elena.cuoco@ego-gw.it


