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Motivation: Gravitational Waves 
m1

m2

‣Ligo-Virgo-Kagra  efficiently detect GWs emitted by Coalescing Binary Systems. 

‣New instrument to probe our universe which allow us to: 
 
 
 
 
 
 

‣More than 90 events during the first 3 operative runs of LIGO/Virgo/Kagra 
interferometers, expected rate of 1 merger/2-3days during O4. 
 

‣Next generation of gravitational waves interferometers (Einstein Telescope, LISA, …) 
(2035) will improve SNR of a factor 10-100 with expected  events per year 

‣Good handling of experimental uncertainties 
‣Extreme need for precise theoretical predictions 

‣Scattering Amplitudes can help in reaching this goal

!(106)

Testing GR in the strong field regime 

Cataloging black hole binaries 

Probe ultra-dense matter (neutron star merging) 

Multi-messenger astrophysics 
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Motivation: Coalescing binary systems 
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‣Post-Newtonian Expansion: 
        [Bound state] 

‣Post-Minkowskian Expansion:   
        [Scattering] 

‣BH perturbation theory /Self Force: 

Post-Minkowskian

GN
m
r

∼ v2 ≪ 1

GN
m
r

≪ v2 ∼ 1

δgμν ∼ ϵ = m2/m1 ≪ 1

Expansion in powers of GN

Expansion in powers of v/c

Expansion in powers of ϵ

GN
m
r

∼ v2 ∼ 1

Newton Potential

‣Non-relativistic velocities:   
 

‣ Dynamics in Post-Minkowskian  
 perturbative scheme 

‣At nPM order:     

v2 ≪ 1

Gn
N

Corrections to the Newtonian potential: 
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where ⌧ = tcoal � t is the time to coalescence.
From (1.92) and (1.99) we obtain the time dependence of the GW phase �:
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in which we used d⌧ = �dt and the integration constant �0 associated to the value of � at coalescence,
namely �0 = �(⌧ = 0).
Approaching the coalescence this quasi-circular orbit description eventually loses its validity, due to
the visible growth of Ṙ and ẇs, however at this stage we would be definitely outside the inspiral
phase, namely the one we are interested in.
Besides, even within the quasi-circular regime the currently achieved results represent only a first step
in the modeling of binary-radiated GWs, suitable to support the detection experiments, since they
are the ultimate offspring of the quadrupole approximation in the context of Newtonian dynamics.
In the next section we will address the problems one encounters in trying to go beyond linearized
General Relativity and introduce possible analytical methods to accomplish that.

1.7 Beyond Linearized General relativity

Figure 1.2: Contributions to PM and PN perturbative schemes at different orders. PM order scales with the
number of horizontal lines, whereas PN order is increases along the diagonals

In order to describe the production of GWs in a multipole expansion in v/c, with v the typical internal
speed of the system, we assumed that the background space-time is the usual Minkowski one, and
that the GWs sources do not contribute to the space-time curvature. However, this assumption is
valid only if the background space-time curvature and the velocity of the source can be treated as
independent variables. Unfortunately, this is not the case if the system is governed by gravitational
forces.
Indeed, for a self-gravitational system the virial theorem holds:

v2

c2
⇠ rs

r
, (1.103)

where rs = 2Gm/c2 is the Schwarzschild radius, m the total mass, and r the typical size of the
system. Since the ratio rs/r is a way to quantify the strength of the gravitational field around the
corresponding system, if we want to increase multipoles we need to modify the background space-
time. Therefore, we cannot proceed straightforwardly in the multipole expansion while remaining
in the theoretical framework of the previous sections. We need to use more accurate models which
give us general relativistic corrections as progressive deviations from the Minkowskian background

1PM
2PM
3PM
4PM
5PM
6PM
7PM

0PN 1PN 2PN 3PN 4PN 5PN 6PN

Astrophysicists/Cosmologists’ whishlist

‣Fourier transform: from amplitude to the effective action: ℒ0PN = − i lim
d→3 ∫ ddp

(2π)d eip(x1−x2)( ) = GNm1m2
r

= im1m2
2cdΛ2

1
p2ℳ0PN =

Diagrammatic approach

‣Just 1 diagram: 

…Westphal, Damour, Cheung, Rothstein, Solon, Bern, Roiban, Shen, Zeng, Parra-Martinez, Ruf, 
Hermann, Buonanno, Porto, Dlapa, Kalin, Liu, Neef, Bjerrum-Bohr, Vanhove, Plante, Cristofoli, Damgaard,  
Guevara, Ochirov, Vines, Di Vecchia, Veneziano, Heisenberg, Russo, Plefka, Jakobsen, Mogull, 
Brandhuber, Travaglini, De Angelis, Accetulli-Huber, Luna, Kosmopoulos, and collaborators… 

[credit: Bern et al.]
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‣Systematic study of coalescing compact objects (bound system) 
‣Effective Field Theory Approach to General Relativity: 

‣ Deviations from Newtonian dynamics via diagrammatic approach: 

Post-Newtonian Expansion 

5

Newton Potential

‣Non-relativistic velocities:   
 

‣ Dynamics in Post-Minkowskian  
 perturbative scheme 

‣At nPM order:     

v2 ≪ 1

Gn
N

Corrections to the Newtonian potential: 
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rs r

λrad ∼ r
v

Graviton

Worldlines

GN
m
r

∼ v2 ≪ 1

‣1PN: ‣2PN:Einstein, Infeld, Hoffman (1938)

‣3PN: ‣4PN: 

‣5PN: 
‣6PN: 

Jaranowski,Schaefer (1997); Damour, Jaranowski, 
Schaefer (1997); Blachę, Faye (2000); Damour, 
Jaranowski Schaefer (2001); Foffa Sturani (2011)

Damour, Jaranowski, Schaefer (2014);  
Bernard, Blanchet, Bohe, Faye, Marsa (2016);  
Foffa, Sturani, Mastrolia, Sturm (2016);  
Galley, Leibovich, Porto, Ross (2016);  
Foffa, Porto, Rothstein, Sturani (2019);  
Blumlein, Maier, Marquard,Schaefer (2020); Bini,  Damour, Geralico (2019); Foffa, Mastrolia, Sturani, 

Sturm, Torres Bobadilla (2019); Blumlein, Maier, 
Marquard, Schaefer (2020); Almeida, Foffa, Sturani (2021); 
Edison, Levi(2022); Almeida, Foffa, Sturani (2021); 
Almeida, Foffa, Sturani (2023); 

Blumlein, Maier, marquard, Schafer (2021)

Ohta-Okamura-Kimura-Hiida (1974) 
Gilmore, Ross (2008)

Goldberger, Rothstein, (2004)

‣The 5PN sector requires some understanding:
G.B, M.K. Mandal, P. Mastrolia, R. Patil, (in progress)
G.B, Master Thesis (2022)

‣Straightforward inclusion of Spin Effects, Tidal forces: Porto (2013), Levi-Steinoff (2015) …. 
Kim, Levi, Yin (2022),  
Mandal, Mastrolia Patil, Steinhoff (2022) 
Levi, Morales, Yin (2022), Levi, Yin (2022) 
Mandal, Mastrolia Patil, Steinhoff. (2023)

rs ≪ r ≪ λrad

eiSeff[xa] = ∫ DH eiStot[xa,H] = +…



‣Systematic study of scattering compact objects: 
‣Manifestly gauge-coordinate invariant 
‣Connection to the bound problem via analytic continuations. 

Post-Minkowskian Expansion 

6

‣2PM:

‣3PM:
Westphal (1985)

GN
m
r

≪ v2 ∼ 1

bm2
Impact parameter

m1

Bern, Cheung, Roiban, Shen, Solon, Zeng 

Bern, Parra-Martinez, Robin, Ruf, Shen, Solon, Zeng (2021)‣4PM:

Parra-Martinez, Ruf, Zeng (2020) 

Bjerrum-Bohr, Damgaard, Planté and Vanhove (2021)

P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano 

 Kälin, Liu, Porto (2020)

Dlapa, Kälin, Liu, Porto (2022)

Mogull, Plefka, Steinhoff(2021)

Jakobsen, Moguls, Plefka, Sauer, Xu (2023)
Jakobsen, Moguls, Plefka, Sauer, Xu (2023)
Damgaard, Hansen, Plante, Vanhove(2023)

Iwasaki (1971)

‣Different approaches: amplitudes based, or worldlines based 

‣One can include spin effects, tidal effects 

‣ Physical observables through: Observable-based approach 
EFT matching 
Eikonal approach 
Radial Action 
Boundary-to-bound 

Kosower, Maybee, O’Connell

Cheung, Solon, Rothstein

Di Vecchia, Heissenberg, Russo, Veneziano

Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng

Dlapa, Kälin, Liu, Porto 

Newton Potential

‣Non-relativistic velocities:   
 

‣ Dynamics in Post-Minkowskian  
 perturbative scheme 

‣At nPM order:     

v2 ≪ 1

Gn
N

Corrections to the Newtonian potential: 
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Scales of the problem

7

‣Black-hole scattering:  

 

‣Chain of inequalities: 

‣In terms of q 
 

b

m1

m2

GNm
b

≪ 1 GNm2 ≫ ℏ

ℏ
m

≪ GNm ≪ b
Compton  
Wavelength

Schwarzschild 
Radius

Impact  
Parameter

Transfered  
Momentum

q
m

≪ GNmq ≪ 1 b = ℏ
q

Impact parameter

‣No quantum corrections: 
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‣Black-hole scattering:  

 

‣Chain of inequalities: 

‣In terms of q 
 

b

m1

m2

GNm
b

≪ 1 GNm2 ≫ ℏ

ℏ
m

≪ GNm ≪ b
Compton  
Wavelength

Schwarzschild 
Radius

Impact  
Parameter

Transfered  
Momentum

q
m

≪ GNmq ≪ 1 b = ℏ
q

Impact parameter

‣No quantum corrections: 
 

‣Naively Black-hole scattering as a 4-point scattering amplitude, with scalar fields gravitationally interacting: 
 
 
 

 

‣Then we take the classical limit:  
 

‣But ordinary perturbation theory breaks down:  

q
m

≪ 1

GNm2 ≫ 1

= + + + …TLGN G2
N G3

N

q ≪ 1 m ≫ 1



Exponential Representation of the S-matrix

8

‣In the classical limit the amplitude exponentiates: 
 
 

‣Expanding both sides and matching the  orders: 
 
 
 
 
 

‣Prescription: Recover  computing                 and subtracting iterations: 

GN

δ(i)

= eiδ(s,q2) = ei(GNδ(0)+G2
Nδ(1)+G3

Nδ(2)+…)

Eikonal Phase
Classical Corrections

TL = i δ(0) = i (δ(1) + i
2 δ(0)2) = i (δ(2) + 1

3! δ(0)3 + i
2 δ(1)δ(0) + i

2 δ(0)δ(1))
Classical Contributions

Iteration terms

[Damgaard, Plante, Vanhove] 

[Di vecchia, Heisenberg, Russo, Veneziano] 

= + + + …TLGN G2
N G3

N



Exponential Representation of the S-matrix
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‣In the classical limit the amplitude exponentiates: 
 
 

‣Expanding both sides and matching the  orders: 
 
 
 
 
 

‣Prescription: Recover  computing                 and subtracting iterations: 

GN

δ(i)

= eiδ(s,q2) = ei(GNδ(0)+G2
Nδ(1)+G3

Nδ(2)+…)

Eikonal Phase
Classical Corrections

TL = i δ(0) = i (δ(1) + i
2 δ(0)2) = i (δ(2) + 1

3! δ(0)3 + i
2 δ(1)δ(0) + i

2 δ(0)δ(1))
Classical Contributions

Iteration terms

[Damgaard, Plante, Vanhove] 

[Di vecchia, Heisenberg, Russo, Veneziano] 

= + + + …TLGN G2
N G3

N

δ(0)(q) ∼ TL

δ(1)(q) ∼ TL−∫ dLIPS TL

δ(2)(q) ∼ +∫ dLIPS TL TL TL −∫ dLIPS TL −∫ dLIPS TL

[see Claudio’s talk] 



Warmup: 1PM Computation:
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[G.B. Master Thesis] 

‣Action of the theory: 

‣Expand  to get the Feynman Rules: 

‣Kinematics 

gμν = ημν + hμν

STOT = SEH + SGF + Sϕ SEH = 1
16πGd ∫ ddx −g R Sϕ = − 1

2 ∫ ddx −g(∂μϕ∂μϕ − m2ϕ2) d = 4 − 2ϵ

Couplings Self-Interactions Propagatorsp1 p4

p2 p3

p2
1 = p2

4 = m2
1

p2
2 = p2

3 = m2
2

s = (p1 + p2)2

t = (p1 − p4)2 = q2 Transfered  
Momentum

γ = p1 ⋅ p2
m1m2



Warmup: 1PM Computation:
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[G.B. Master Thesis] 

‣Action of the theory: 

‣Expand  to get the Feynman Rules: 

‣Kinematics 

gμν = ημν + hμν

STOT = SEH + SGF + Sϕ SEH = 1
16πGd ∫ ddx −g R Sϕ = − 1

2 ∫ ddx −g(∂μϕ∂μϕ − m2ϕ2) d = 4 − 2ϵ

Couplings Self-Interactions Propagatorsp1 p4

p2 p3

p2
1 = p2

4 = m2
1

p2
2 = p2

3 = m2
2

s = (p1 + p2)2

t = (p1 − p4)2 = q2 Transfered  
Momentum

γ = p1 ⋅ p2
m1m2

TL =δ(0) = = 16πG
q2(ϵ − 1) m1m2(q2y(ϵ − 1) + m1m2(2y2(ϵ − 1) − 1))

= 16πG
q2(ϵ − 1) m2

1m2
2(2y2(ϵ − 1) − 1)) + !(q0) Classical Limit

TLδ(0)(b) = 1
4m1m2 y2 − 1 ∫ dd−2

(2π)d−2 e−iq⋅b = − GNJ2ϵ

ϵ
m1m2

2y2 − 1
y2 − 1

χ = − ∂
∂J

Re[δ(0)(b)] = GN

J
2m1m2(2y2 − 1)

y2 − 1

‣Tree level calculation: 

‣FT to Impact parameter space: 

‣ Scattering Angle:



2PM: Traditional Computation (I):
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[G.B. Master Thesis] 

‣Integrand Generation:  
 

‣IBP Decomposition: 

= + + + + + …

1-loop scalar integrals belong to the same family of Feynman Integrals: 

 Hundreds of integrals  appearing, but they are not all independent Ia1a2a3a4

Amplitude Factory

Integrand Generation MIs Evaluation

S

Tensor Decomposition IBP Decomposition

)

D1 = ℓ2

D2 = (ℓ − q)2
D3 = (ℓ + p1)2 − m2

1
D4 = (ℓ − p2)2 − m2

21
4

2
3

Ia1a2a3a4
= ∫ ddℓ

(2π)d
1

Da1
1 Da2

2 Da3
3 Da4

4

Loop momentum Denominators



2PM: Traditional Computation (II):
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[G.B. Master Thesis] 

‣IBP identities:  Integrals of the same family are related by IBP identities.

∫ ddℓ
(2π)d

∂
∂ℓμ ( vμ

Da1
1 Da2

2 Da3
3 Da4

4 ) = 0 ⇒ ∑
i

ciIi = 0

Every integral can be decomposed in terms of a finite basis of master integrals : {ℐi}ν
i=1

I = ∑
i

ci ℐMI
i

Coefficients Master Integrals

Linear relation

One can generate thousands of identities and solve them by Gauss elimination 

vμ = vμ(ℓ, pi, q)

Kotikov, Remiddi, Gehrmannn; Laporta,… 
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[G.B. Master Thesis] 

‣IBP identities:  Integrals of the same family are related by IBP identities.

∫ ddℓ
(2π)d

∂
∂ℓμ ( vμ

Da1
1 Da2

2 Da3
3 Da4

4 ) = 0 ⇒ ∑
i

ciIi = 0

Every integral can be decomposed in terms of a finite basis of master integrals : {ℐi}ν
i=1

I = ∑
i

ci ℐMI
i

Coefficients Master Integrals

Linear relation

One can generate thousands of identities and solve them by Gauss elimination 

vμ = vμ(ℓ, pi, q)

Kotikov, Remiddi, Gehrmannn; Laporta,… 

1-loop amplitude decomposed in terms of 5 Master Integrals (MIs):  

 How can we evaluate these integrals?

= + + +c1 c2 c3 c4 c5

‣IBP Decomposition: 



2PM: Traditional Computation (III):

12

‣MIs evaluation: 

 

The derivative of a MI w.r.t. a kinematic variable can be decomposed in MIs: 

One can derive homogeneous DEQs for MIs: 

x ∈ {s, t, m1, m2}

Henn, 
Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, 

,…

∂xℐMI
i = ∑

j
cjℐMI

j

∂x ( ) = )x ( ) Can be solved perturbatively
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‣MIs evaluation: 

 

The derivative of a MI w.r.t. a kinematic variable can be decomposed in MIs: 

One can derive homogeneous DEQs for MIs: 

x ∈ {s, t, m1, m2}

Henn, 
Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, 

,…

∂xℐMI
i = ∑

j
cjℐMI

j

∂x ( ) = )x ( ) Can be solved perturbatively

)(s, t, m1, m2) → )(y, q, m1, m2)
q ≪ 1

δ(1)(q) TL−∫ dLIPS TL= = G2
Nm2

1m2
2(m1 + m2)

6π2(5y2 − 1)
−q2

χ(1) = G2
N

J2
3π

4 s
m2

1m2
2(m1 + m2)(5y2 − 1) Simple Result

‣Classical limit: 

‣ Subtraction of iteration term: 

‣ Scattering Angle 



Optimisations

13

‣Bottlenecks: 

‣Solution: 

Many diagrams Iteration termsDifficult IntegralsDifficult reduction Classical Limit 

Take the classical limit as early as possible in the computation

Generalised Unitarity for Integrand Generation:

On-shell tree level amplitudes: Cuts:
1
Di

→ δ(Di) ⇒ =
Method of regions for expansion under the integral sign

✓Only few cuts

Hard region: ℓ ∼ !(m) ∼ !(pi)
Soft region: ℓ ∼ !(q)

Classical Physics  Soft region⇔
 [Bern, Cheung, Roiban, Shen, Solon, Zeng] 

✓ Easy reduction to Master 

✓Only single scale integrals

✓Only classical physics

Effective Field Theory Approach (HEFT) use tree level amplitude for computing only classical physics

[Brandhuber, Chen, Travaglini, Wen] 

[Damgaard, Haddad, Helset] 
[Aoude, Haddad, Helset] 

H H H

 Bern, Dixon, Dunbar Kosower, Britto Cachazo, Feng, Mastrolia, Forde, Travaglini, Buchbinder,  
Anastasiou, Badger, Bjerrum-Bohr, Ossola, Papadopoulous, Pittau, …

 [Beneke, Smirnov] 



‣Classical tree level amplitudes by heavy mass expanding  quantum amplitudes: 

‣These amplitudes obey a double-copy structure: ( )2
YM

HEFT (Heavy Mass Effective Theory)
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[Brandhuber, Chen, Travaglini, Wen] 

[Damgaard, Haddad, Helset] 
[Aoude, Haddad, Helset] 

⇒
m ≫ 1

H H + HH

!(m3) !(m2)
+…⇒

m ≫ 1
H +…

!(m2)

⇒
m ≫ 1

H H H

!(m4)
H H+

!(m3)
+ H

!(m2)
+…

GRGR

GR

∼H

∼H (/YM
3 [1,v])2

1
∼H

(/YM
4 [[1,2], v])2

s12

1 2 1 2 3

∼ (/YM
5 [[[1,2],3], v])2

s123s12
+ (/YM

5 [[[1,3],2], v])2

s123s13
+ + (/YM

5 [[[2,3],1], v])2

s123s23
H

Generate directly classical amplitudes 
No need for iteration terms 
Manifestly gauge invariant



‣Classical Phases are given by 2MPI amplitudes 
‣ We can eliminate iteration terms and quantum terms at the diagrammatic level 

‣ Easy to generalise at higher order 

‣  Straightforward to compute the scattering angle: 

Classical Phases from HEFT
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δ(0)(q) = δ(1)(q) =

δ(2)(q) = ⋃ ⋃

⋃

⋃

⋃ ⋃

Easy integrand generations 
Integrals are single-scale (easy to compute using 
differential equations) 
Explicit power counting rules

[Brandhuber, Chen, Travaglini, Wen] 

∼ !(m2
1m2

2)

⋃ ⋃

∼ !(m3
1m2

2) ∼ !(m2
1m3

2) ∼ !(m3
1m3

2)
Iteration

∼ !(m2
1m2

2)
Quantum

χ = − ∂
∂J

Re[δ(b)] δ(b) ∼ ∫ dd−2q
(2π)d−2 eiq⋅bδ(q)

Angular Momentum Fourier Transform

H

H

H

H H H

H H H

H H

H H

H

H H

HH H

H H

H H H

HH H

H H

H

H

H H

H H H H

H

H

H

H H



Observable-based approach
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‣GWs observables can be computed from amplitudes via an Observable-based approach. 

‣Consider well defined asymptotic states:  

‣ Expectation value of a well defined observable:  

‣Can we apply the same techniques also here? Yes 

b

m1

m 1

Impact 

|ψ⟩ = ∫ dϕ(p1p2) ϕ1(p1)ϕ2(p2)eib⋅p1 |p1p2⟩

On-shell phase space integral Wavepacket describing particles. Localised with small 
uncertainty w.r.t masses of the problem Two different quanta of masses m1 m2

ΔPμ
1 = out⟨ψ |ℙμ

1 |ψ⟩out − in⟨ψ |ℙμ
1 |ψ⟩in

= in⟨ψ | [i ℙμ
1, T] |ψ⟩in + in⟨ψ |T†[ℙμ

1, T] |ψ⟩in

|ψ⟩out = S |ψ⟩in S = 1 + i T

Fourier Transform

Amplitude Iterations

[Kosower, Maybee, O’Connell, (2018)]

−iqμ= ∫ ̂dq ̂δ(2p1 ⋅ q) ̂δ(−2p2 ⋅ q)e−ib⋅q i( )
ℐv ℐr

∫ d(LIPS)lμ
1

[Herrmann, Parra-Martinez, Ruf, Zeng (2021)]



‣Classical impulse can be evaluated from HEFT: 

‣ At 1PM only the virtual contribution appears: 

‣At 2PM extra terms coming from the cut contribution:  

Impulse from HEFT

ΔPμ
1 −iqμ= ∫ ̂dq ̂δ(2p̄1 ⋅ q) ̂δ(−2p̄2 ⋅ q)e−ib⋅qi( )

ℐv ℐr

ℐ(0)
v ∼ =

ℐ(1)
v ∼ = +

∼ !(m3
1m2

2)∼ !(m2
1m3

2)∼ !(m3
1m3

2)

Iteration

∼ !(m2
1m2

2)
Quantum

+ +

ℐ(1)
r ∼ =

∼ !(m3
1m3

2)

Iteration

+
∼ !(m2

1m3
2) ∼ !(m3

1m2
2)

δ′ 

δ′ 

∫ d(LIPS)lμ
1

∼ !(m2
1m2

2)

Extra

HEFT tree level can reproduce the amplitude 
Cut contributions need to be computed 
KMOC kernel different from classical amplitude

[Caron-Huot, Giroux, Hannesdottir, Mizera (2023)]

+
17



Gravitational Waveform from Amplitudes
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‣Local observables can be computed from amplitudes, such as the gravitational waveform. 

‣ Expectation value of the Riemann tensor , or equivalently of the the graviton field  : Rμνρσ(x) hμν(x)

⟨hμν(x)⟩ = out⟨ψ |ℍμν(x) |ψ⟩out = ⟨ψ |S†ℍμν(x)S |ψ⟩ |ψ⟩out = S |ψ⟩in

S = 1 + i T

Fourier Transform

W̃ = ∫ dμ(d)ei(q1⋅b1+q2⋅b2)( )
Amplitude Iterations

[Cristofoli, Gonzo, Kosower, O’Connell (2021)]

m2

m1
b

= 2κRe[∫
2

∏
j=1

∫ dΦ(pj) |ϕ(p1) |2 |ϕ(p2) |2 ∑
h

∫ dΦ(k)e−ik⋅xϵ(h)*
μ (k)ϵ(h)*

ν (k) i W̃ ]

dμ(d) = ddq1
(2π)d−1

ddq2
(2π)d−1 δ(2p̄1 ⋅ q1)δ(2p̄2 ⋅ q2)δ(d)(q1 + q2 − k)

Spectral Waveform



‣The spectral waveform can be evaluated from HEFT: 

‣  At leading order only virtual contribution appears: 

‣ NLO has been recently computed: 

  

‣Real contributions were not included 
‣Partial agreement with MPM formalism 
‣Fourier transform not performed 
‣New terms appearing coming from the cut contribution  
‣Recently computed with spin effects at LO  

Waveform from HEFT

( )
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∼ ∼

∼

[Bini, Damour, Geralico, 2023]

[G.B., De Angelis, Kosower (in progress)]

[Jacobsen, Mogull, Plefka, Steinhoff (2021)]

Classical computation: 

Worldline: 

Eikonal:

[Brandhuber, Brown, Chen, De Angelis, Gowdy, Travaglini  (2023)] [Georgoudis, Heissenberg, Varquez-Holm (2023)][Herderschee, Roiban, Teng (2023)]

[Eath (1978)][Kovacs, Thorne (1977)]

[Mougiakakos, Riva, Vernizzi (2021)]

[De Angelis, Novichkov, Gonzo (2023)]

[Di Vecchia, Heisenberg, Russo, Veneziano (2023)]

[Aoude, Haddad, Heissenberg, Helset (2023)][Brandhuber, Brown, Gowdy, Travaglini  

Not Included

[Caron-Huot, Giroux, Hannesdottir, Mizera (2023)]

+
(0)

(1)
⋃ ⋃

(1)

W̃ = ∫ dμ(d)ei(q1⋅b1+q2⋅b2)

ℐv
ℐr



zv

‣Do we really need the full amplitude to get the physical observable? 

‣ Smart change of coordinates: 

‣  Deform the integration contour in the  plane: zv

Simplifying Waveform via Analiticity and Unitarity
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W̃ = ∫ dμ(d)ei(q1⋅b1+q2⋅b2)(ℐv + ℐr)
q1 = z1v1 + z2v2 + zbb̃ + zvv vμ

1 =
pμ

1
m1

, vμ
2 =

pμ
2

m2
, b̃μ = bμ

−b2
, v2 = − 1.

W̃ = 1
(2π)D−2(4m̄1m̄2) γ2 − 1 ∫ dD−4v dzvdzb zD−4

v e−izb −b2 (ℐv + ℐr)
z1= γ

γ2 − 1 w2, z2=− 1
γ2 − 1 w2

[G.B., De Angelis, Kosower (in progress)]

The integral localise along the branch cuts: . , 

Only that part contributes to the integration kernel, 
This simplifies the components of the amplitude needed for the computation, 
Easier to perform the Fourier integrals

−q2
1 = 0 −q2

2 = 0
−q2

1 = 0

−q2
1 = 0

−q2
2 = 0

−q2
2 = 0

dμ(d) = ddq1
(2π)d−1

ddq2
(2π)d−1 δ(2p̄1 ⋅ q1)δ(2p̄2 ⋅ q2)δ(d)(q1 + q2 − k)

Re[zv]

Im[zv]



Outlooks
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‣Gravitational Waves physics is an exciting field where high precision predictions are required  

‣Scattering Amplitudes provide a systematic framework to compute physical observables                                                     
in Post-Newtonian and Post-Minkowskian approximation 

  
‣ Many techniques have been developed to simplify the computation: 

‣ New techniques for Integral decomposition: 

‣Using an observable-based approach it is possible to compute the GWs waveform from Amplitudes 

‣ The puzzle to get the NLO waveform has still to be solved: 

‣Scattering amplitudes can be applied also in other fields, like for cosmological correlation functions. 
✓Evaluation of the 1-loop 5-pts amplitudes 

5PN sector on-going 

4PM sector completed

[G.B, M.K. Mandal, P. Mastrolia, R. Patil (in progress)]

[G.B., De Angelis, Kosower (in progress)]

✴Inclusion of Cut contribution ✴Fourier transform to time domain

✴Intersection Theory for Feynman Integrals

✴Intersection Theory for Fourier Integrals

[G.B, V. Chestnov, G.E. Crisanti, H. Frellesvig, F. Gasparotto, M.K. Mandal, P. Mastrolia, R. Patil (in progress)]

[G.B, V. Chestnov, G.E. Crisanti, M. Giroux, P. Mastrolia, S. Smith (in progress)]

[P. Benincasa, G.B., M.K. Mandal, P. Mastrolia F, Vazao (in progress)]

On-shell methods Heft Expansion Efficient IBP decomposition Differential Equations for Master Integrals



Thanks for the attention!
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