GraSP23 || GravityShapePisa 2023

Gravitational Waves Observables From Scattering Amplitudes

GravityShapePisa 2023, Pisa, 25th October 2023

Giacomo Brunello

Scattering amplitudes techniques, born in particle physics to study scattering at colliders, can be applied to study coalescing binary systems, to make predictions for gravitational waves observables

Contents:

- **1.** Motivation: Gravitational Waves
- 2.Post-Minkoswskian approach to General Relativity

- **3.Observable-based approach** Impulse from amplitudes Gravitational waveform from amplitudes
- 4. Outlooks

Message:

Physical scales

- Exponential representation of the S-matrix
- Traditional amplitude computation
- Optimisations

Based on collaborations with: S. De Angelis, D. Kosower, M. Mandal, P. Mastrolia, R. Patil

Motivation: Gravitational Waves

- Ligo-Virgo-Kagra efficiently detect GWs emitted by Coalescing Binary Systems.
- ► New instrument to probe our universe which allow us to:
 - Testing GR in the strong field regime
 - Cataloging black hole binaries
 - Probe ultra-dense matter (neutron star merging)
 - Multi-messenger astrophysics

More than 90 events during the first 3 operative runs of LIGO/Virgo/Kagra interferometers, expected rate of 1 merger/2-3days during O4.

- Next generation of gravitational waves interferometers (Einstein Telescope, LISA, ...) (2035) will improve SNR of a factor 10-100 with expected $\mathcal{O}(10^6)$ events per year
- Good handling of experimental uncertainties Extreme need for precise theoretical predictions
- Scattering Amplitudes can help in reaching this goal

Motivation: Coalescing binary systems

Astrophysicists/Cosmologists' whishlist

			0PN	1PN	2PN	I 3F	N	4PN	1 (5PN	6	PN			
	G	(1	$+ v^{2}$	+v	4 +	$v^{6} +$	v8	+	v^{10}		v^{12}	+	•••)	1PM
	G^2	(1	$+ v^{2}$	+ v	4	v ⁶ +	v ⁸	+	v^{10}	+	v^{12}	+	•••)	2PM
→	G^3	(1	$+ v^{2}$	+v	4 +	$v^{6} +$	v ⁸	+	v^{10}	+	v^{12}	+	•••)	3PM
→	G^4	(1	$+ v^{2}$	+v	4 +	$-v^{6} +$	v^8	+	v^{10}	+	v^{12}	+	•••)	4PM
_	G^5	(1	$+ v^{2}$	+ v	4 +	$v^{6} +$	v^8	+	v^{10}	+	v^{12}	+	•••)	5PM
	G^6	(1	$+ v^{2}$	+ v	4 +	$v^{6} +$	v^8	+	v^{10}	+	v^{12}	+	•••)	6PM
	G^7	(1	$+ v^2$	+ v	4 +	$v^{6} +$	v^8	+	v^{10}	+	v^{12}	+	•••)	7 PM

[credit: Bern et al.]

Expansion in powers of v/c

 $G_N \frac{m}{r} \ll v^2 \sim 1$

Expansion in powers of G_N

 $\frac{m}{\delta g_{\mu\nu}} \sim \frac{m}{\epsilon} \sim v^2 \sim 1$ $\delta g_{\mu\nu} \sim \frac{r}{\epsilon} = m_2/m_1 \ll 1$

Expansion in powers of ϵ

[Bound state]

Post-Minkowskian Expansion: [Scattering]

BH perturbation theory /Self Force:

Post-Newtonian Expansion

$$e^{iS_{eff}[x_a]} = \int D$$

► 1PN:

- ► 5PN:

Astrophysicists/Cosmologists' whishlist

		6PN	5PN	PN	N 4	3P	2PN	1PN	0PN				_
1PN)	12 +	+ v	$-v^{10}$	- 28	$v^{6} +$		$+v^{4}$		1 +	(G	
2PN)	12 +	+ v	$-v^{10}$	v^{8}	$v^{6} +$	+	$+ v^4$		1 +	(G^2	→
3PN)	12 +	+ v	$-v^{10}$	v^{8}	$v^{6} +$	+	$+ -v^4$		1 +	(G^3	•
4PN)	12 +	+ v	$-v^{10}$	v^8 -	$v^{6} +$	+ * *	$+ v^{4}$	v ²	1 +	(G^4	→
5PN)	12 +	+ v	$-v^{10}$	v^8 -	$v^{6} +$	+	$+ v^{4}$	v^{2-1}	1 +	(G^5	
6PN)	12 +	+ v	$-v^{10}$	v^8 -	$v^{6} +$	+	$+ v^4$	$-v^{2-1}$	1 +	(G^6	
7PN)	12 +	+ v	$-v^{10}$	v^8 -	$v^{6} +$	+	$+ v^4$	v^2	1 +	(G^7	

[credit: Bern et al.]

Straightforward inclusion of Spin Effects, Tidal forces:

Porto (2013), Levi-Steinoff (2015) Kim, Levi, Yin (2022), Mandal, Mastrolia Patil, Steinhoff (2022) Levi, Morales, Yin (2022), Levi, Yin (2022) Mandal, Mastrolia Patil, Steinhoff. (2023)

Post-Minkowskian Expansion

Astrophysicists/Cosmologists' whishlist

			OPN	1PN	2PN	1 3F	PN	4PN	I .	5PN	6	PN			
	G	(1	$+ v^2$	+v	4+	-v ⁶ +	28-	+	v^{10}		v^{12}	+	•••)	1 P N
→	G^2	(1	$+ v^{2}$	+ v	4	$v^{6} +$	-v ⁸ -	+	v^{10}	+	v^{12}	+	•••)	2PN
→	G^3	(1	$+ v^{2}$	+v	4 +	$v^{6} +$	v ⁸⁻	+	v^{10}	+	v^{12}	+	•••)	3PN
→	G^4	(1	$+ v^{2}$	+v	4 +	$-v^{6} +$	v^8	+	v^{10}	+	v^{12}	+	• • •)	4PN
	G^5	(1	$+ v^2$	+ v	4 +	$v^{6} +$	v^8	+	v^{10}	+	v^{12}	+	•••)	5PN
	G^6	(1	$+ v^{2}$	+ v	4 +	$v^{6} +$	v^8	+	v^{10}	+	v^{12}	+	•••)	6 P N
	G^7	(1	$+ v^2$	+ v	4 +	$v^{6} +$	v^8	+	v^{10}	+	v^{12}	+	•••)	7 PN

- Systematic study of scattering compact objects: Manifestly gauge-coordinate invariant Connection to the bound problem via analytic continuations.

► 2PM:

► 3PM:

[credit: Bern et al.]

Physical observables through:

- Iwasaki (1971) Westphal (1985) Bern, Cheung, Roiban, Shen, Solon, Zeng Parra-Martinez, Ruf, Zeng (2020) Kälin, Liu, Porto (2020) Bjerrum-Bohr, Damgaard, Planté and Vanhove (2021) Mogull, Plefka, Steinhoff(2021) P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano
- ► 4PM: Bern, Parra-Martinez, Robin, Ruf, Shen, Solon, Zeng (2021) Dlapa, Kälin, Liu, Porto (2022) Jakobsen, Moguls, Plefka, Sauer, Xu (2023) Jakobsen, Moguls, Plefka, Sauer, Xu (2023) Damgaard, Hansen, Plante, Vanhove(2023)

Different approaches: amplitudes based, or worldlines based

One can include spin effects, tidal effects

- Observable-based approach Kosower, Maybee, O'Connell
- EFT matching Cheung, Solon, Rothstein
- Eikonal approach Di Vecchia, Heissenberg, Russo, Veneziano
- Radial Action Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng
- Boundary-to-bound Dlapa, Kälin, Liu, Porto

Transfered In terms of q **Momentum**

Scales of the problem

 $\frac{\hbar}{-} \ll G_N m \ll b$ т

Compton Wavelength

Schwarzschild **Radius**

Impact Parameter

Naively Black-hole scattering as a 4-point scattering amplitude, with scalar fields gravitationally interacting:

 \mathcal{M}

Then we take the classical limit:

But ordinary perturbation theory breaks down:

Scales of the problem

 $\frac{q}{-} \ll 1 \qquad q \ll 1 \qquad m \gg 1$

7

 $G_N m^2 \gg 1$

Exponential Representation of the S-matrix

In the classical limit the amplitude exponentiates:

• Expanding both sides and matching the G_N orders:

[Di vecchia, Heisenberg, Russo, Veneziano] [Damgaard, Plante, Vanhove]

Exponential Representation of the S-matrix

In the classical limit the amplitude exponentiates:

[Di vecchia, Heisenberg, Russo, Veneziano] [Damgaard, Plante, Vanhove]

[see Claudio's talk]

Warmup: 1PM Computation:

• Action of the theory: $S_{TOT} = S_{EH} + S_{GF} + S_{\phi}$ $S_{EH} = \frac{1}{1}$

• Expand $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ to get the Feynman Rules:

Kinematics

 p_2

 $p_1^2 = p_4^2 = m_1^2 \qquad s = (p_1 + p_2)^2$ $p_2^2 = p_3^2 = m_2^2 \qquad t = (p_1 - p_4)^2 = p_2^2$

[G.B. Master Thesis]

$$\frac{1}{16\pi G_d} \int d^d x \sqrt{-g} \ R \qquad S_\phi = -\frac{1}{2} \int d^d x \sqrt{-g} (\partial_\mu \phi \partial^\mu \phi - m^2 \phi^2) \qquad d = 4 - d^2 q^2$$

Self-Interactions

Propagators

$$(p_2)^2$$

 $(p_4)^2 = q^2$ Transfered
Momentum

Couplings

$$\gamma = \frac{p_1 \cdot p_2}{m_1 m_2}$$

Warmup: 1PM Computation:

Action of the theory:

 $\delta^{(0)}$

• Expand $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ to get the Feynman Rules:

Kinematics

 p_2

 $p_1^2 = p_4^2 = m_1^2$ $s = (p_1 + p_2)^2$ $p_2^2 = p_3^2 = m_2^2$ $t = (p_1 - p_4)^2 =$

► Tree level calculation:

$$= TL = \begin{cases} = \frac{16\pi G}{q^{2}(\epsilon - 1)}m_{1}m_{2}(q^{2}y(\epsilon - 1) + m_{1}m_{2}(2y^{2}(\epsilon - 1) - 1)) \\ = \frac{16\pi G}{q^{2}(\epsilon - 1)}m_{1}^{2}m_{2}^{2}(2y^{2}(\epsilon - 1) - 1)) + \mathcal{O}(q^{0}) & \text{Classical Limit} \end{cases}$$

$$\delta^{(0)}(\mathbf{b}) = \frac{1}{4m_{1}m_{2}\sqrt{y^{2} - 1}} \int \frac{d^{d-2}}{(2\pi)^{d-2}}e^{-iq\cdot b} TL = -\frac{G_{N}J^{2\epsilon}}{\epsilon}m_{1}m_{2}\frac{2y^{2} - 1}{\sqrt{y^{2} - 1}} \end{cases}$$

Scattering Angle:

$$\chi = -\frac{\partial}{\partial J} Re[\delta^{(0)}(b)] = \frac{G_N}{J} \frac{2n}{J}$$

[G.B. Master Thesis]

$$(p_4)^2 = q^2$$
 Transfered Momentum

$$\gamma = \frac{p_1 \cdot p_2}{m_1 m_2}$$

2PM: Traditional Computation (I):

Integrand Generation:

► IBP Decomposition:

Loop momentum

• Hundreds of integrals $I_{a_1a_2a_3a_4}$ appearing, but they are not all independent

I-loop scalar integrals belong to the same family of Feynman Integrals:

$$\frac{p}{p^{d}} \frac{1}{D_{1}^{a_{1}} D_{2}^{a_{2}} D_{3}^{a_{3}} D_{4}^{a_{4}}} \qquad D_{1} = \ell^{2} \qquad D_{3} = (\ell + p_{1})^{2} - m_{1}^{2} \\ D_{2} = (\ell - q)^{2} \qquad D_{4} = (\ell - p_{2})^{2} - m_{2}^{2} \\ D_{4} = (\ell - p_{2})^{2} - m_{2}^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell - q)^{2} \qquad D_{5} = (\ell - q)^{2} \\ D_{5} = (\ell -$$

2PM: Traditional Computation (II):

Integrals of the same family are related by IBP identities.

$$\int \frac{d^d \ell}{(2\pi)^d} \frac{\partial}{\partial \ell^{\mu}} \left(\frac{v^{\mu}}{D_1^{a_1} D_2^{a_2} D_3^{a_3} D_4^{a_4}} \right) = 0$$

One can generate thousands of identities and solve them by Gauss elimination

$$I = \sum_{i}^{i}$$
Coeffic

► IBP identities:

Kotikov, Remiddi, Gehrmannn; Laporta,...

$$\sum_{i} c_i I_i = 0$$

i Linear relation

$$v^{\mu} = v^{\mu}(\ell, p_i, q)$$

• Every integral can be decomposed in terms of a finite basis of master integrals $\{\mathscr{F}_i\}_{i=1}^{\nu}$:

 $\mathcal{J}_i^{C_i} \mathcal{J}_i^{MI}$

icients

Master Integrals

2PM: Traditional Computation (II):

Integrals of the same family are related by IBP identities.

$\int \frac{d^d \ell}{(2\pi)^d} \frac{\partial}{\partial \ell^{\mu}} \left(\frac{v^{\mu}}{D_1^{a_1} D_2^{a_2} D_3^{a_3} D_4^{a_4}} \right) = 0 \qquad \Longrightarrow$

One can generate thousands of identities and solve them by Gauss elimination

Coefficients

► IBP Decomposition: ●1-loop amplitude decomposed in terms of 5 Master Integrals (MIs):

$$= c_1 \bigvee + c_2$$

How can we evaluate these integrals?

► IBP identities:

Kotikov, Remiddi, Gehrmannn; Laporta,...

$$\Rightarrow \qquad \sum_{i} c_{i} I_{i} = 0$$
i Linear relation

$$v^{\mu} = v^{\mu}(\ell, p_i, q)$$

• Every integral can be decomposed in terms of a finite basis of master integrals $\{\mathcal{F}_i\}_{i=1}^{\nu}$:

 $I = \sum_{i} c_i \mathcal{J}_i^{MI}$

Master Integrals

2PM: Traditional Computation (III):

Mls evaluation: The derivative of a MI w.r.t. a kinematic variable can be decomposed in Mls:

$$\partial_x \mathcal{J}_i^M$$

One can derive homogeneous DEQs for MIs:

$${}^{II} = \sum_{j} c_{j} \mathscr{I}_{j}^{MI}$$

$$x \in \{s, t, m_1, m_2\}$$

Can be solved perturbatively

,...

Henn, Argeri, Di Vita, Mastrolia, Mirabella, Schlenk,

2PM: Traditional Computation (III):

Mls evaluation: The derivative of a MI w.r.t. a kinematic variable can be decomposed in Mls:

$$\partial_x \mathcal{J}_i^{MI}$$

One can derive homogeneous DEQs for MIs:

$$q \ll 1$$

$$\mathscr{A}(s, t, m_1, m_2) \to \mathscr{A}(y, q, m_1, m_2)$$

Subtraction of iteration terr

$$\delta^{(1)}(q)$$
 =

Scattering Angle

TΖ

$$I = \sum_{j} c_{j} \mathcal{I}_{j}^{MI}$$

$$x \in \{s, t, m_1, m_2\}$$

Can be solved perturbatively

,...

Henn, Argeri, Di Vita, Mastrolia, Mirabella, Schlenk,

Hard region:	$\ell \sim \mathcal{O}(m) \sim \mathcal{O}(p_i)$	Classical Physics
	— v	[Bern, Cheung, Roiban, S
Soft region:	$\ell \sim \mathcal{O}(q)$	

Effective Field Theory Approach (HEFT) use tree level amplitude for computing only classical physics

Optimisations

Bern, Dixon, Dunbar Kosower, Britto Cachazo, Feng, Mastrolia, Forde, Travaglini, Buchbinder,

 \checkmark Only few cuts

 $s \Leftrightarrow Soft region$ Shen, Solon, Zeng]

Easy reduction to Master ✓Only single scale integrals

> [Damgaard, Haddad, Helset] [Aoude, Haddad, Helset] [Brandhuber, Chen, Travaglini, Wen]

HEFT (Heavy Mass Effective Theory)

Classical tree level amplitudes by heavy mass expanding quantum amplitudes:

- Generate directly classical amplitudes
- No need for iteration terms
- Manifestly gauge invariant

[Damgaard, Haddad, Helset] [Aoude, Haddad, Helset] [Brandhuber, Chen, Travaglini, Wen]

Classical Phases from HEFT

- Classical Phases are given by 2MPI amplitudes
- We can eliminate iteration terms and quantum terms at the diagrammatic level

Easy to generalise at higher order

Straightforward to compute the scattering angle:

Angular Momentum

- Easy integrand generations 0
- Integrals are single-scale (easy to compute using) differential equations)
- Explicit power counting rules 0

$$\chi = -\frac{\partial}{\partial J} Re[\delta(\mathbf{b})]$$

$$\delta(\mathbf{b}) \sim \int \frac{d^{d-2}q}{(2\pi)^{d-2}} e^{iq \cdot b} \delta(q)$$

Fourier Transform

- GWs observables can be computed from amplitudes via an Observable-based approach.
- Consider well defined asymptotic states:

$$|\psi\rangle = \int d\phi$$

On-shell phase space integral

Expectation value of a well defined observable:

$$\Delta P_{1}^{\mu} = _{out} \langle \psi | \mathbb{P}_{1}^{\mu} | \psi \rangle_{out} - _{in} \langle \psi | \mathbb{P}_{1}^{\mu} | \psi \rangle_{in}$$

$$= _{in} \langle \psi | [i \mathbb{P}_{1}^{\mu}, T] | \psi \rangle_{in} + _{in} \langle \psi | T^{\dagger} [\mathbb{P}_{1}^{\mu}, T] | \psi \rangle_{in}$$

$$= \int \hat{d}q \hat{\delta}(2p_{1} \cdot q) \hat{\delta}(-2p_{2} \cdot q) e^{-ib \cdot q} i \left(\begin{array}{c} q^{\mu} \\ q^{\mu} \end{array} \right)$$
Fourier Transform

Can we apply the same techniques also here? Yes

$$|\psi\rangle_{out} = S |\psi\rangle_{in}$$
 $S = 1 + i T$

 $,T]|\psi\rangle_{in}$

[Herrmann, Parra-Martinez, Ruf, Zeng (2021)]

Impulse from HEFT

Classical impulse can be evaluated from HEFT:

$$\Delta P_1^{\mu} = \int \hat{d}q \hat{\delta}(2\bar{p}_1 \cdot q) \hat{\delta}(-2\bar{p}_2)$$

At 1PM only the virtual contribution appears:

► At 2PM extra terms coming from the cut contribution:

- HEFT tree level can reproduce the amplitude
- Out contributions need to be computed
- KMOC kernel different from classical amplitude

[Caron-Huot, Giroux, Hannesdottir, Mizera (2023)]

Gravitational Waveform from Amplitudes

- Local observables can be computed from amplitudes, such as the gravitational waveform.
- Expectation value of the Riemann tensor $R_{\mu\nu\rho\sigma}(x)$, or equivalently of the the graviton field $h_{\mu\nu}(x)$:

$$\langle h_{\mu\nu}(x) \rangle = _{out} \langle \psi | \mathbb{H}_{\mu\nu}(x) | \psi \rangle_{out} = \langle \psi | S^{\dagger} \mathbb{H}_{\mu\nu}(x) S |$$

$$= 2\kappa Re \left[\iint_{j=1}^{2} \int d\Phi(p_{j}) | \phi(p_{1}) |^{2} | \phi(p_{2}) |^{2} \right]$$

$$\tilde{W} = \int d\mu^{(d)} e^{i(q_1 \cdot b_1 + q_2 \cdot b_2)} ($$
Fourier Transform
$$d\mu^{(d)} = \frac{d^d q_1}{(2\pi)^{d-1}} \frac{d^d q_2}{(2\pi)^{d-1}} \delta(2\bar{p_1} \cdot q_1) \delta(2\bar{p_2} \cdot q_2) \delta^{(d)}(q_1 + q_2 - k)$$

[Cristofoli, Gonzo, Kosower, O'Connell (2021)]

The spectral waveform can be evaluated from HEFT:

$$\tilde{W} = \int d\mu^{(d)} e^{i(q_1 \cdot b_1 + q_2 \cdot b_2)}$$

At leading order only virtual contribution appears:

NLO has been recently computed:

- Real contributions were not included [Caron-Huot, Giroux, Hannesdottir, Mizera (2023)]
- ► Partial agreement with MPM formalism [Bini, Damour, Geralico, 2023]
- Fourier transform not performed
- New terms appearing coming from the cut contribution
- ► Recently computed with spin effects at LO [De Angelis, Novichkov, Gonzo (2023)] [Brandhuber, Brown, Gowdy, Travaglini

[Brandhuber, Brown, Chen, De Angelis, Gowdy, Travaglini (2023)] [Herderschee, Roiban, Teng (2023)] [Georgoudis, Heissenberg, Varquez-Holm (2023)]

[G.B., De Angelis, Kosower (in progress)]

[Aoude, Haddad, Heissenberg, Helset (2023)]

Simplifying Waveform via Analiticity and Unitarity

Do we really need the full amplitude to get the physical observable?

$$\tilde{W} = \int d\mu^{(d)} e^{i(q_1 \cdot b_1 + q_2 \cdot b_2)} \left(\mathcal{J}_v + \mathcal{J}_r \right) \qquad d\mu^{(d)} = \frac{d^d q_1}{(2\pi)^{d-1}} \frac{d^d q_2}{(2\pi)^{d-1}} \delta^{(2\bar{p_1} \cdot q_1)} \delta^{(2\bar{p_2} \cdot q_2)} \delta^{(d)}(q_1 + \mathcal{J}_r) \delta^{(d)}(q_2 + \mathcal{J}_r) \delta^{(d)}(q_1 + \mathcal{J}_r) \delta^{(d)}(q_2 + \mathcal{J}_r) \delta^{(d)}(q_1 + \mathcal{J}_r) \delta^{(d)}(q_2 + \mathcal{J}_r) \delta^{(d)}(q_2 + \mathcal{J}_r) \delta^{(d)}(q_2 + \mathcal{J}_r) \delta^{(d)}(q_2 + \mathcal{J}_r) \delta^{(d)}(q_1 + \mathcal{J}_r) \delta^{(d)}(q_2 + \mathcal{J}_r) \delta^{(d)$$

• Smart change of coordinates: $q_1 = z_1v_1 + z_2v_2 + z_bb$

$$\tilde{W} = \frac{1}{(2\pi)^{D-2}(4\bar{m}_1\bar{m}_2)\sqrt{\gamma^2 - 1}} \int d^{D-4}v \, dz_v \, dz_b \, z_v^{D-4}$$

• Deform the integration contour in the z_v plane:

- The integral localise along the branch cuts: $-q_1^2 = 0$. $-q_2^2 = 0$,
- Only that part contributes to the integration kernel,
- This simplifies the components of the amplitude needed for the computation,
- Easier to perform the Fourier integrals

[G.B., De Angelis, Kosower (in progress)]

+
$$z_{\nu}\nu$$
 $v_{1}^{\mu} = \frac{p_{1}^{\mu}}{m_{1}}, \quad v_{2}^{\mu} = \frac{p_{2}^{\mu}}{m_{2}}, \quad \tilde{b}^{\mu} = \frac{b^{\mu}}{\sqrt{-b^{2}}}, \quad v^{2} = -1$

Outlooks

- Gravitational Waves physics is an exciting field where high precision predictions are required
- Scattering Amplitudes provide a systematic framework to compute physical observables in Post-Newtonian and Post-Minkowskian approximation 5PN sector on-going [G.B, M.K. Mandal, P. Mastrolia, R. Patil (in progress)] •4PM sector completed
- Many techniques have been developed to simplify the computation: On-shell methods Heft Expansion Efficient IBP decomposition Differential Equations for Master Integrals
- New techniques for Integral decomposition: *Intersection Theory for Feynman Integrals [G.B, V. Chestnov, G.E. Crisanti, H. Frellesvig, F. Gasparotto, M.K. Mandal, P. Mastrolia, R. Patil (in progress)] *Intersection Theory for Fourier Integrals [G.B, V. Chestnov, G.E. Crisanti, M. Giroux, P. Mastrolia, S. Smith (in progress)]
- Using an observable-based approach it is possible to compute the GWs waveform from Amplitudes
- The puzzle to get the NLO waveform has still to be solved: [G.B., De Angelis, Kosower (in progress)]

Evaluation of the 1-loop 5-pts amplitudes *Inclusion of Cut contribution

Scattering amplitudes can be applied also in other fields, like for cosmological correlation functions.

*Fourier transform to time domain

[P. Benincasa, G.B., M.K. Mandal, P. Mastrolia F, Vazao (in progress)]

Thanks for the attention!