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Locality and Non-locality

Kinematics Dynamics

Points of a 
tangent/cotangent bundle

It refers to the STATES

Classical Theories: local

CM  • Born interpretation of Ψ
• Heisenberg uncertainty principle

Quantum Theories: non-local

Tensor fields over a 
manifold

CFT

It refers to the INTERACTIONS



Local Action vs Non-local Action

Local Action
it is a functional of only local fields, 
i.e. algebraic functions of fields or 
their derivatives evaluated at a single 
point

It is the paradigm of all fundamental 
field theories, both classical and 
quantum

Non-local Action
it is a functional of non-local fields 
(at least one), i.e. functions of fields 
evaluated at more than one point or 
transcendental functions of fields or 
their derivatives

It describes an effective theory

We need a link 
between GR and QM

GR has to be improved

QFT has to be improved
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Nonlocality in physics

Kinematical non-locality in 
Quantum Mechanics

{• Uncertainty principle

No possibility to localize the 
system during its evolution

No unique path despite 
giving the initial conditions

• Quantum entanglement

Dynamical non-locality 
in Quantum Field Theory

• Lagrangians made of non-polynomial differential operators

Manifests in all fundamental interactions when one-loop 
effective actions are taken into account•

May arise when QFT on curved spacetime is considered 
and non-perturbative techniques are used for dimensional 
regularization  

•
A. O. Barvinsky, “Aspects of nonlocality in quantum field
theory, quantum gravity and cosmology,” Modern Physics
Letters A, vol. 30, no. 03n04, p. 1 540 003, 2015, ISSN: 1793-
6632. DOI: 10.1142/s0217732315400039.



Non-Locality in Physics
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• Fundamental interactions are non-local. It can be shown 
                   by considering the one-loop effective action

Euler-Heisenberg Lagrangian
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Non-Locality in Physics

Yukawa Lagrangian

The related effective action is

The non-locality is   in the operator



Large Scales                                               No theory is capable of solving  these problems at once so far

Ø Universe accelerated expansion                                   
Ø Dark energy

Ø Galaxy Rotation Curve

Ø Dark side
Ø Fine-tuning of cosmological parameters

Ø  Ho tension et al.

Small Scales

Ø Renormalizability
Ø GR cannot be quantized

Ø GR cannot be treated under the same 

       standard as other interactions
Ø Discrepancy between  theoretical

       and experimental value of Λ

Ø Spacetime singularities

Non-Locality could fix some General Relativity shortcomings

Can Fundamental (UV) and Dark Side (IR)  Issues be solved by Non-locality?



…….some possibilities in modifying  gravity

• Relax some assumptions of GR:

Ø Equivalence principle

Ø Second-order field equations

Ø Lorentz invariance



Examples of Local Extended Theories of Gravity (ETGs)

…extended because we have to recover in someway GR

𝑆!" =
1
16𝜋&𝑑

#𝑥 −𝑔 𝜙𝑅 −
𝜔
𝜙𝑔

$% ▽$ 𝜙▽% 𝜙 + 𝑆(')

𝑆)*+,-./0123 =
1

16𝜋𝐺4
&𝑑#𝑥 −𝑔 𝑅 + 𝛼𝑅5 	+ 𝑆(')

𝑆)*6776 =
1

16𝜋𝐺4
&𝑑#𝑥 −𝑔 𝑅 + 𝛼𝑅5 +𝛽	𝑅$%𝑅$% 	+ 𝑆(')

• Scalar-tensor Theories

• Higher-order Theories

• Higher-order-scalar-tensor Theories

𝑆 = &𝑑#𝑥 −𝑔 𝐹(𝑅, 𝑅, □5𝑅,… ,□2𝑅,𝜙) −
ε
2𝑔

$% ▽$ 𝜙▽% 𝜙 + 2κ	𝑆(')



Non-local ETGs 

• Infinite Derivative Theories of 
Gravity (IDGs)

• Integral Kernel Theories of 
Gravity (IKGs)

𝑆	 ∝ 𝐹(𝑅,◻!" 𝑅)

𝐹# ◻$ = *
%&'

(

𝑓#,%◻$
	%

𝑆	 ∝ 	 𝐹# ◻$  𝑅

𝑆	 ∝ 𝐹(𝑇,◻!" 𝑇)

𝑆	 ∝ 𝐹(𝐺,◻!" 𝐺)

They could be very useful to address astrophysical and cosmological scales and,
eventually,  infrared dynamics

R, T, G are geometric invariants (Curvature, Torsion, Gauss-Bonnet)

⧠
⧠

⧠

⧠

⧠⧠
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Infinite Derivative Theories of Gravity (IDGs)

We can start from the infinite-derivative Lorentz-invariant action depending on a scalar field 

Prototype of  Non-Locality:
a general operator depending on 
             the distance (x-y)

Starting from S and performing:

1. A Fourier transformation

2. The reparameterization                                                      with

~

We get



Infinite Derivative Theories of Gravity (IDGs)

𝑆 = κ0𝑑+𝑥 −𝑔 𝑅 + 𝛼 𝑅𝐹" ⧠ $ 𝑅 + 𝑅,-𝐹. ⧠ $ 	𝑅,-+𝑅,-/0𝐹1 ⧠ $ 𝑅,-/0 	+ 𝑆(3)

The most general gravitational action in 4D, quadratic in  curvature and  ghost-free, 
has to  contain infinite covariant derivatives:

• κ ≡ 16𝜋𝐺4 89 ,   𝛼 ≡ 𝑀1
85   ,   𝑀1 = 𝑙𝑒𝑛𝑔𝑡ℎ

• ⧠ 1 ≡ ⧠/𝑀1
5  ,     ⧠ ≡ 𝑔$% ▽$▽%

• 𝐹/ ⧠ 1 	 transcendental and analy,c	 𝐹/ ⧠ 1 = ∑0:;< 𝑓/,0⧠ 1
	0

T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar. “Towards singularity and ghost free theories of gravity”. In: Phys. Rev. Lett. 
108 (2012), p. 031101



Infinite Derivative Theories of Gravity (IDGs)
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Super-renormalizable and Unitary theories 

admit regular 
blackhole solutions

“maximal” UV-completion 
of  𝑺𝑺𝒕𝒂𝒓𝒐𝒃𝒊𝒏𝒔𝒌𝒚

L. Modesto. “Super-renormalizable Quantum Gravity”. In: Phys. Rev. D86 (2012), p. 044005;  F. Briscese, L. Modesto, and S. Tsujikawa. “Super-
renormalizable or finite completion of the Starobinsky theory”. In: Phys. Rev. D89.2(2014), p. 024029.



• Higher-order IKG  (in the metric, affine, teleparallel formalism)
• Non-local extension of  f 𝑅 − 𝑔𝑟𝑎𝑣𝑖𝑡𝑦

• It could account for UV and IR quantum corrections

• It could reproduce both UV and IR cosmic evolution

A possible classification of NLG models  can come from  Noether Symmetries 

Motivations

Purposes
• Cosmography, Dark Energy
• Physically motivated cosmological models
• Reproducing cosmic history from UV to IF scales
• Search for NLG BH solutions where natural lengths are present

A possible method? Noether Symmetry Approach



Noether Point Symmetries
̅𝑡 = ̅𝑡 𝑡, 𝑞; ε ≃ 𝑡 + εξ 𝑡, 𝑞

,𝑞/ = ,𝑞/ 𝑡, 𝑞; ε ≃ 𝑞/ + εη/ 𝑡, 𝑞

𝑿 = 𝜉 𝑡, 𝑞
𝜕
𝜕𝑡 + 𝜂/ 𝑡, 𝑞

𝜕
𝜕𝑞/

𝑿[9] = 𝑿+ 𝜂[9]/
𝜕
𝜕𝑞̇/ = 𝑿+ 𝜂̇/ − 𝜉̇𝑞̇/

𝜕
𝜕𝑞̇/

Noether Theorem.  If and only if it exists a function 𝑔(𝑡, 𝑞 𝑡 )  such that

𝑿[9]𝐿 + 𝜉̇𝐿 = 𝑔̇,

then the one-parameter group of point transformations generated by 𝑿 is a one-parameter group of 
Noether point symmetries for the dynamical system described by the Lagrangian 𝐿.
The associated first integral of  motion is:

𝐼 𝑡, 𝑞, 𝑞̇ = 𝜉 𝑞̇
𝜕𝐿
𝜕𝑞̇/ − 𝐿 − 𝜂/

𝜕𝐿
𝜕𝑞̇/ +𝑔

1-parameter (𝜀)	group of 
point transformations

infinitesimal group generator

‘‘first prolongation’’ of the 
infinitesimal generator



Noether Symmetry Approach
The recipe:   

1. Consider a class of point-like (cosmological, or spherically symmetric) Lagrangian

2. Write the ansatz for 𝑿 ed 𝑿["]

3. Derive  the Noether point symmetry existence condition

𝑿["]𝐿 + 𝜉̇𝐿 = 𝑔̇

 4. Obtain a polynomial depending on  𝜉 𝑡, 𝑞 ,	𝜂$ 𝑡, 𝑞 , 𝑔̇ 𝑡, 𝑞   and products of the                      
Lagrangian velocities (𝑒. 𝑔.	𝜂̇$	𝜂̇% 𝜉̇ … )  and a system of PDEs for  𝜉, 𝜂$ , 𝑔̇

5. Select the form of Lagrangian

6. Solve, eventually, dynamics by first integrals. 

The system  contains the unknown function 𝑭 𝑹,𝝓 , so that it can  provide, in principle, 
the explicit form for 𝑭 𝑹,𝝓  related to  the existence of symmetries. In other words, the 
existence of symmetries gives physically motivated Lagrangians. Φ represents NL terms.



Non-Local Gravity Cosmology

Based on:

S. Capozziello and F. Bajardi, ``Nonlocal gravity cosmology: An overview,'' Int. J. Mod. Phys. D 31 (2022) no.06, 
2230009 doi:10.1142/S0218271822300099

A. Acunzo, F. Bajardi and S. Capozziello, ``Non-local curvature gravity cosmology via Noether symmetries,'' Phys. Lett. B 
826 (2022), 136907 doi:10.1016/j.physletb.2022.136907



Non-Local Gravity  and Late Time Cosmology

S. Deser and R. P. Woodard. “Nonlocal Cosmology”.  Phys. Rev. Lett. 99 (2007), p. 111301
M. Maggiore and M. Mancarella “Nonlocal Gravity and Dark Energy” Phys. Rev. D 90 (2014), 023005

• 𝑆 = 9
9LMN!

∫𝑑#𝑥 −𝑔	𝑅 1 + 𝐹 ⧠ 89𝑅 + 𝑆(')

𝑔$%	OPQR = 𝑑𝑖𝑎𝑔 1,−𝑎5 𝑡 ,−𝑎5(𝑡), − 𝑎5(𝑡)

(⧠ 89𝑅)(𝑡) = F
*"

*
𝑑𝑡S

1
𝑎T 𝑡S F*"

*#

𝑑𝑡SS𝑎T 𝑡SS 𝑅(𝑡SS)

• ⧠ ≡ 𝑔$% ▽$▽%=
9
8U
𝜕$ −𝑔	𝑔$%𝜕%

• ⧠ 89𝑅 𝑥 ≡ ∫𝑑#𝑥S −𝑔	𝐺 𝑥, 𝑥S 	𝑅 𝑥S 	 𝑤𝑖𝑡ℎ	 𝐺 𝑥, 𝑥S 	 ′′𝑟𝑒𝑡𝑎𝑟𝑑𝑒𝑑SS𝐺𝑟𝑒𝑒𝑛

⧠ &" could explain the current late-time accelerated cosmic expansion without invoking any Dark 
Energy:

𝑡! = 𝑡"#~10$𝑦
𝑡 = 𝑡%~10&%𝑦

𝑎 𝑡 ~𝑡' 
𝑠 = 2/3 

A simple example

The claim is : Current cosmic acceleration is recovered without  any fine-tuning of parameters
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Deser-Woodard model: cosmic acceleration

• FLRW 1
𝑎T 𝑡 𝜕* 𝑎

T 𝑡 	𝜕*

⧠ 89𝑅 𝑡 = 𝐺 𝑅 𝑡 = F
;

*
𝑑𝑡S

1
𝑎T 𝑡S F;

*#

𝑑𝑡SS𝑎T 𝑡SS 	𝑅 𝑡SS

𝑎 𝑡 	= 	 𝑡
$

% &'(
𝑅𝐷: 	𝛾 =

1
3

𝑀𝐷: 	𝛾 = 0

• 𝐺 𝑅 𝑡  vanishes  for 𝑡 = 𝑡6ab/c.
• 𝐺 𝑅 𝑡  starts to grow for 𝑡 > 𝑡6ab/c.

• 𝐺 𝑅 𝑡 ≅ −14  for 
𝑡 = 𝑡;~109;	𝑦𝑟

Enables a delayed response to the radiation-matter transition which could explain 
the current cosmic acceleration

The steps:
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Localization of Deser-Woodard model

𝑆 =
1
2𝜅F𝑑

#𝑥 −𝑔	𝑅 1 + 𝑓 ⧠ 89𝑅 	

𝐺$% +Δ𝐺$% = 𝜅	𝑇$%
(')

Δ𝐺$% = 𝐺$% +𝑔$%⧠ −	∇$%∇$% 𝑓 ⧠ 89𝑅 +⧠ 89 𝑅	𝑓′ ⧠ 89𝑅 +
1
2 𝛿$e𝛿%

f + 𝛿$
f𝛿%e −

1
2𝑔$% 	𝑔

ef 𝜕e ⧠ 89𝑅 𝜕f ⧠ 89 𝑅	𝑓′ ⧠ 89𝑅{Scalar-tensor equivalent 

𝜂(𝑥) =	⧠ 89𝑅(𝑥) 	 ⟹ 	 𝑅 = ⧠𝜂

ℒ =
1
2𝜅 𝑅 1 + 𝑓 𝜂 − 𝜆 𝑅 −⧠ 𝜂

𝑆 =
1
2𝜅F𝑑

#𝑥 −𝑔 𝑅 1 + 𝑓 𝜂 − 𝜕$𝜉	𝜕$𝜂 − 𝜉𝑅 + 𝑆(')	

⧠𝜂 = 𝑅	, 	 ⧠𝜉 = −𝑅 89 :
8:

	 , 𝐺,- = 𝜅	𝑇,-
3 + "

;<+, :,=

S. Nojiri and S. D. Odintsov, “Modified
non-local-f(r) gravity as the key for the
inflation and dark energy,” Physics Letters
B, vol. 659, no. 4, 821–826, 2008, ISSN: 0370-
2693. DOI: 10.1016/j.physletb.2007.12.001



Extension to general Lagrangians

formal localization

𝑔)*	,-./ 	⇒
𝑅 = −6

𝑎̈
𝑎
+

𝑎̇
𝑎

$

𝑅 =◻ 𝜙 = 𝜙̈ + 3𝐻𝜙̇

𝒒 𝑡 = 𝑎 𝑡 , 𝑅 𝑡 , 𝜙 𝑡 , 𝜖(𝑡)

Minisuperspace

New scalar field



Selection of the models by Noether symmetries 

System of 28 PDE2 classes of solutions:
same generator,
different functions

Two interesting cases

Noether 
Vector



First Case

24

NON-LOCAL EXTENSION OF STAROBINSKY MODEL RECOVERED 
BY NOETHER SYMMETRIES

A possible choice

The  function becomes

Example for n=2
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Cosmological Solutions for the First Case

Replacing

Into the system of E-L equations, we get  different exact cosmological solutions e.g.

I:

II:

Non-locality can be easily restored by 
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Cosmological Solutions for the First Case

Exact radiation solutions:

A possible case is 

and then the minimal Deser-Woodard case is easily recovered
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Cosmological Solutions for the Second Case

This case is interesting because it reproduces the above super-renormalizable model and 
gives rise to compatible dark-energy models. 

L. Modesto. “Super-renormalizable Quantum Gravity”. In: Phys. Rev. D86 (2012), p. 044005;  F. Briscese, L. Modesto, and S. Tsujikawa. “Super-
renormalizable or finite completion of the Starobinsky theory”. In: Phys. Rev. D89.2(2014), p. 024029.



Observational  Perspectives

S. Bahamonde, S. Capozziello, M. Faizal, R. C. Nunes. ‘‘Nonlocal Teleparallel Cosmology’’. In: Eur. Phys. J. 
C77.9 (2017), p.628

• Observational constrains of the model free parameters via cosmological data, e.g. 
SNe	Ia + BAO+ CC+𝐻;

• Compatibility with PLANCK data
• Searching for new cosmological constraints for the non-local terms
• The Deser-Woodard model is  a particular case of a wide class of models selected by Noether 

symmetries



Astrophysical tests by Galactic Centre

Based on: 
K.F. Dialektopoulos, D. Borka,  S. Capozziello, V. Borka Jovanovic, P. Jovanovic “Constraining  non-local  gravity 
by S2 star orbits”. In: Phys. Rev. D 99 (2019), p. 044053

S. Capozziello, D. Borka,  P. Jovanovic, V. Borka Jovanovic,  “Constraining  Extended  Gravity Models  by S2 star 
orbits around the Galactic Centre”. In: Phys. Rev. D 90 (2014), p. 044052



Objectives
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qSelecting  non-local action in spherical symmetry by Noether  
symmetries

qPerforming the post-Newtonian limit

qConstraining the free parameters by S2 star orbiting around SgrA* 

qEstimate the reduced       and constrain characteristic lengths
 related to NLG 



Non-Local Gravity in Spherical Symmetry
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We focus  on a spherically symmetric spacetime 

We use again Noether symmetries

               we generalize the  Deser and Woodard model

New scalar field depends on both r and t



Solutions 
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Noether symmetries select

1) We restrict the interval to a subclass of spacetimes of the form

2) We consider up to  sixth-order approximation of the metric

(    ,    , 0 , 0)



Post Newtonian  Limit
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The approximation 

Potentials

The above functions can be  replaced into the field equations



Corrected Newtonian potentials
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Replacing the second 
function selected by 
Noether’s approach

into the field equations, 
with the approximations

We obtain

Order of the 
potential



Two new length appears:       and       , searching for those by simulated orbits 
giving at least the same       as the Keplerian orbit            

Maps of the reduced       in 
different regions, 
representing the lengths 
in AU giving at least the 
same       as the Keplerian 
orbit
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After fixing the right parameters minimizing the       we plot the orbit  

Comparisons between the Keplerian orbit 
of S2 star (red dashed line)
and the orbit predicted by Non-Local 
gravity (blue solid line) with parameter
values that minimize the : 

compatible with the EHT measurements!

coordinates of S2 star

Same comparison but with the 
error bars. Same value for the 
characteristic lengths.



Constraining	Non − Local	Gravity	
by	Clusters	of	Galaxies

F. Bouchè, S. Capozziello, V. Salzano and K. Umetsu, ``Testing non-local gravity by clusters of galaxies,’’ 
Eur. Phys. J. C82 (2022) 7, 652  

S. Capozziello, M. Faizal, M. Hameeda, B. Pourhassan and V. Salzano, ``Logarithmic corrections to Newtonian 
gravity and Large Scale Structure,'' Eur. Phys. J. C 81 (2021) no.4, 352

Based on:



Again weak field approximation

𝑑𝑠5 = 𝐴 𝑟 𝑑𝑡5 −𝐵 𝑟 𝑑𝑟5 − 𝑟5𝑑Ω5 { Spherically symmetric metric
Birkhoff’s theorem as a good approximation in the PN limit
Solution B 𝑟 = ⁄1 𝐴(𝑟) not guaranteed in nonlocal gravity

Post-Newtonian limit

𝐴 𝑟 = 1 +
1
𝑐5𝜙

(5) +
1
𝑐#𝜙

(#) +
1
𝑐L𝜙

(L) +ℴ 8

𝐵 𝑟 = 1 +
1
𝑐5𝜓

(5) +
1
𝑐#𝜓

(#) +ℴ 6

𝜂 𝑟 = 1 +
1
𝑐5 𝜂

(5) +
1
𝑐# 𝜂

(#) +
1
𝑐L 𝜂

(L) +ℴ 8

𝜉 𝑟 = 1 +
1
𝑐5 𝜉

(5) +
1
𝑐# 𝜉

(#) +
1
𝑐L 𝜉

(L) +ℴ 8

substituting into
Klein-Gordon equations 

and ‘’0,0’’ and ‘’1,1’’
component of the gravitational

field equations

𝑔00 = 𝐴 𝑟 = 1 +
2Φ(𝑟)
𝑐$

𝑔&& = −𝐵 𝑟 = 1 −
2Ψ(𝑟)
𝑐$

Φ 𝑟 = −
𝐺𝑀
𝑟
+
𝐺$𝑀$

2𝑐$𝑟$
14
9
+

3
𝑟1
−
11
6𝑟2

𝑟 +

𝐺%𝑀%

2𝑐3𝑟%
7

12𝑟2
−
25
6𝑟1

𝑟 −
16
27

+
2
𝑟1$
−
1
𝑟2
$ 𝑟$

Ψ 𝑟 = −
𝐺𝑀
3𝑟

+
𝐺$𝑀$

2𝑐$𝑟$
2
9
+

3
2𝑟2

−
1
𝑟1

𝑟
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We calculate the theoretical lensing convergence and  compare the 
results with lensing data provided by CLASH  (Cluster Lensing and 
Supernova survey with Hubble).

Tests by Gravitational Lensing
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𝜅 𝑅 =
1
𝑐5
𝐷g1𝐷g
𝐷1

F
8<

h<
𝑑𝑧	∇,5

Φ 𝑅, 𝑧 +Ψ(𝑅, 𝑧)
2Lensing convergence:

Generalize the point-like potentials to extended, spherically symmetric mass distributions. 
We consider the previously selected model to test the NL contribution

1. Estimate the orders of magnitude of each contribution

ℴ
𝐺𝑀
𝑟 ~	1085i	kpc5s85 ℴ

𝐺5𝑀5

2𝑐5𝑟5 ~	108T5	kpc5s85

ℴ
𝐺T𝑀T

2𝑐#𝑟T ~	108T5	kpc5s85
the third 

order can be 
neglected

2. Choose a mass density profile NFW

𝜌4OR 𝑟 =
𝜌1

𝑟
𝑟1

1 + 𝑟
𝑟1

5 { 𝜌1 =
Δ
3𝜌j,

𝑐kT

ln 1 + 𝑐k − 𝑐k
1 + 𝑐k

𝑟1 =
𝑟k
𝑐k

3. Extend the potentials by integrating 
over infinitesimal mass elements

• the integration over the radial coordinate 
𝑟′ has to be performed between 0 and 𝑟
and between 𝑟 and ∞, because Newton’s 
theorems are not guaranteed in nonlocal 
gravity

• the mass element is 𝑑𝑀 =
𝜌 𝑟! 	𝑟′"𝑑𝑟!𝑠𝑖𝑛𝜃	𝑑𝜃𝑑𝜑, while 𝑀" →
2𝑀𝑑𝑀 = 2	𝑑𝑀 𝑟! ∫#

$!𝑑𝑟!!	𝑟′′"	𝜌 𝑟!!

• the terms ⁄1 𝑟 and ⁄1 𝑟" enter the integral as 
⁄1 𝒓 − 𝒓′  and ⁄1 𝒓 − 𝒓′ ", where 𝒓 − 𝒓′ =
𝑟" + 𝑟′" − 2𝑟𝑟!𝑐𝑜𝑠𝜃

"
#
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Statistical analysis adopting the Deser-Woodard model

Free parameters

𝜽 = 𝑐5;;,𝑀5;;, 𝑟l , 𝑟m 𝜒5 = 𝜿*n6- 𝜽 − 𝜿-.1 � 𝑪89 � 𝜿*n6- 𝜽 − 𝜿-.1

15 elements vector with observed values

𝜅 𝑅 =
1
𝑐$
𝐷45𝐷4
𝐷5

[
67

'7
𝑑𝑧	∇8$

Φ 𝑅, 𝑧 + Ψ(𝑅, 𝑧)
2

Inverse covariant matrix

Theoretical lensing convergence

3-step procedure for the minimization

1. First preliminary MCMC, 10˙000 steps long, with arbitrary initial values and the following covariance matrix

2. Second preliminary MCMC of 10˙000 iterations. As initial values and covariance matrix we used the ones resulting 
from the first MCMC (minimum of the 𝜒$)

3. Definitive Markov Chain of 50˙000 steps. As initial values and covariance matrix we used the ones resulting from 
the second MCMC (minimum of the 𝜒$)

Data sets: taken from CLASH program
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Fit in the GR scenario: 
agreement within 1𝜎 with 

results from literature

Cross-check with 𝑐.''- 𝑀.'' 
relations from literature: for 
GR the region spanned by 

the clusters agrees with the 
bands, while for NL, the 

region shifts towards higher 
concentrations and masses

Fit in the NL scenario: shift 
towards higher values with 

respect to GR

J. Merten et al., arXiv: 1404.1376 [astro-ph.CO].

C. A. Correa, J. S. B.Wyithe, J. Schaye, and A. R. Duffy, arXiv: 1502.00391 [astro-ph.CO].

B. Diemer and M. Joyce, arXiv: 1809.07326 [astro-ph.CO].

Results: NFW parameters

M200 is used as the halo mass, which is the total mass contained within R200,
the radius within which the enclosed over-density is 200 times the critical density. 
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𝑟: > 4 I 10!` − 7 I 10!.kpc 𝑟= > 2 I 10!` − 3 I 10!.kpc

Typical lower bounds for the non-local parameters

Φ"~	10!.a − 10!.`kpc.s!.

Corresponding magnitude of the non-local corrections to the potential

Ψ"~	10!.b − 10!.+kpc.s!.

Statistics for  typical clusters

Results for  non-local length scales
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New potentials occurring in Non-Local Gravity can be  used to 
investigate the gravitational lensing



Gravitational	Waves	in	
Non—Local Gravity

S. Capozziello and M. Capriolo, ``Gravitational waves in non-local gravity,'' Class. Quant. Grav. 38 (2021) no.17, 
175008

Based on:

S. Capozziello, M. Capriolo, S. Nojiri  ``Consideration on Gravitational waves in higher-order local and non-local 
gravity,’’ Phys. Lett. B. 810 (2020), 135821
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Let us start from one of the two functions containing symmetries, that is

withSetting n = 1 and q = 0, the action can be recast as:

or, in terms of Lagrange multipliers, as

Plugging the first-order expansions

into the field equations, one gets:
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Gravitational wave in non-local gravity

• is a square integrable function related to the non-locality
• is the wave four-vector

The first part is a massless, 2-helicity 
transverse waves solutions, namely the 
standard gravitational wave of General 
Relativity. GR is then recovered when 

non-local functions vanish

Therefore, for a massless plane wave travelling in +z 
direction, which propagates at speed c, we have



48

Non-locality yields three additional polarizations of the form

satisfying the conditions
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Nonetheless, only three 
(out of five) DOF survive, 
namely two massless 2-
helicity tensor modes 

and one massive 0-
helicity scalar mode, 

exactly like f(R) gravity

Polarizations and modes for gravitational waves in a theory of gravity with non-local corrections.

Infinitesimal w.r.t the other modes when the GW speed approach c, namely 
when the mass of the non-local GW goes to zero

Summing up:
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Main Results provided by GWs in Non-Local Gravity:

• GWs in Non-Local Gravity exhibit a massive scalar gravitational mode in addition to 
the standard ones

• The model                       can be considered as a straightforward extension of General 
Relativity, where a non-local correction is taken into account 

• Einstein theory is a particular case occurring when 𝑎" = 0
• If we consider deviations of the waves from exactly massless ones propagating at 

the light speed, two polarization modes are suppressed

• Extending the approach to more general terms like        

Perspectives:

• These models can be ghost-free and their infrared counterparts can be interesting at 
astrophysical and cosmological scales to address the dark side issues. 

• Detecting further modes as the scalar massive one derived here is a major signature to 
break the degeneracy of modified theories of gravity which could be discriminated at 
fundamental level 

Motivations:



Conclusions
• NLG	can reproduce, in principle, 

from Noether Symmetries, it is possible:

• to  select physically relevant cosmological models
• to derive  exact cosmological solutions
• To address naturally Dark Energy issues
• to constraint  solutions by means of experimental observations

both UV and IR cosmic evolution

Models can be investigated in the weak-field limit and provide

Gravitational waves in NLG provide a further polarization  with respect to the standard 
ones of GR

• Constraints on S2 star orbit
• New potentials to be studied via gravitational lensing
• Characteristic lengths could be identified in   galaxies and  clusters of galaxies 

• Finding a new polarization could be a fundamental test for NLG
• NLG could contribute to the cosmological stochastic background
• A worldwide web of interferometers could contribute to select further polarizations
• ET and LISA could be fundamental in identifying these new features
See also E. Belgacem, M. Maggiore et al. JCAP 11 (2019) 022



Perspectives

I. Theoretical perspectives:

• Search for  cosmological solutions consistent with cosmic history from UV to IR scales

• Study  renormalizability and unitarity of NLG at fundamental level

• Cylindrical  BH solutions containing NLG terms

• Quantum cosmology in NLG

II. Observational perspectives:

• Observational constrains of the model free parameters via cosmological data, e.g. 
SNe	Ia + BAO+ CC+𝐻;

• Constraining   astrophysical scales by S2 star orbit observations by NTT/VLT  or EHT

• Refine clusters of galaxies analysis using dust,  hot gas, Sunyaev-Zeldovich effect and 
stellar component

• Possible detection of further gravitational modes by VIRGO/LIGo or ET


