

Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences

Adriano Frattale Mascioli

Contact: <u>adriano.frattalemascioli@uniroma1.it</u> **Sapienza University of Rome & INFN-Roma1**

In **collaboration** with: Simone Mastrogiovanni (INFN-Roma1 & Sapienza) Elisa Maggio (AEI, Potsdam)

GraSP, 25/10/2023 Pisa

Outline of the work

RATIONALE

- ✓ **Gravitational waves** (GWs) from **compact binary coalescence** (CBC) represent a novel tool to investigate the **nature of compact objects**.
- Exotic Compact Objects (ECOs) could in principle be distinguished by Black Holes (BHs) through minor phenomenological effects, like the ergoregion instability.

STRUCTURE OF THE WORK

- **1. Hierarchical Bayesian inference** using GWs from the **population** of binary black holes (BBHs) of the **third observing run** (O3).
- 2. Spins as figures of merit: assume different spin distribution for populations of BHs and ECOs.
- **3.** Assume firstly a population of only ECOs, and then a mixed one.

K. Ng et al. Phys. Rev. D **103**, 063010 (2021) *K. Ng et al. Phys. Rev. D* **126**, 151102 (2021)

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

Why Exotic Compact Objects?

Black holes are fascinating objects but present theoretical controversies (curvature singularity, information loss paradox).

Exotic Compact Objects: A possible solution <

Horizonless objects

1. Correction to GR

2. Beyond SM fields coupled to gravity

CLASSIFIED BY

Compactness	Reflectivity
Inverse of the (possibly effective) radius, defined as:	At their (possibly effective) surface
$r_0 = r_+(1 + \varepsilon)$	\mathcal{R}
With r_+ Kerr horizon, ε closeness parameter.	In general complex and frequency dependent.
BH limit: $\varepsilon \to 0$	BH limit : $\mathcal{R} \rightarrow 0$

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

The ergoregion instability (1/2) Linear perturbations: $\frac{d^2\Psi(r)}{dr_*^2} + [\omega^2 - V(r)]\Psi(r) = 0$

SAPIENZA

Potential governing the master equation: In the ECO case, the absence of the horizon at $r_* \rightarrow -\infty$ implies a cavity, producing long-lived modes. Here $\varepsilon = 10^{-6}$.

The imaginary frequency changes sign after a critical spin χ_{crit} : presence of unstable modes Here $\varepsilon = 10^{-6}$ and $|\mathcal{R}|^2 = 1$

E. Maggio, P. Pani, G. Raposo, Springer (2021)

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

The ergoregion instability (2/2)

Behaviour of χ_{crit} with the closeness parameter for a perfectly reflecting ECO $|\mathcal{R}|^2 = 1$

Credit: E. Maggio, PhD Thesis, 2022

Adriano Frattale Mascioli GraSP 2023, Pisa

Sapienza

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

Slide 5

✓ For a **perfectly reflecting ECO** one can find the relation $\chi_{crit}(\varepsilon)$ by **imposing** $\omega_R \simeq \omega_I \simeq 0$: $\chi_{crit}(\varepsilon) \propto \frac{1}{\log_{10} \varepsilon}$

- The spin decays till it reaches the critical value
- ✓ The time of instability is defined as:

$$\tau_{ins} \equiv \frac{1}{\omega_I} \in (5,7) \left(\frac{M}{10 \, M_{\odot}}\right) \, sec$$

Where the **lower** (**upper**) bounds are for **polar** (**axial**) GW perturbations.

If **multiple GWs** from CBC events are **collected**, it's **crucial** to estimate **collective properties** of the **population** of compact objects. Some of the **frequent questions** one tries to **answer** could be:

- How are distributed the masses/spins of the population of binary black holes/neutron stars? Are there peaks/gaps in the spectrum? Is it what we expect theoretically?
- Are there evidences of different classes of objects (our task)?
- Are we able to handle selection effects, namely the fact we are biased to measuring mainly the most luminous events?

The **framework** employed for these scopes is the **hierarchical Bayesian inference**.

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

SAPIENZA UNIVERSITÀ DI ROMA Hierarchical Bayesian inference (1/2)

Main quantities

- GW single-event parameters: θ
- Number of sources for unit θ :

 $\frac{dN_s}{d\boldsymbol{\theta}} = N_s \cdot p_{pop}(\boldsymbol{\theta}|\boldsymbol{\lambda})$

• Pop. Hyperparameters: $\Lambda = \{N_s, \lambda\}$

N_s: total number of mergers for a given time and volumeλ: shape parameters

• $p_{pop}(\boldsymbol{\theta}|\boldsymbol{\lambda})$: fraction of the population with parameters $\boldsymbol{\theta}$, given $\boldsymbol{\lambda}$.

Handling selection effects:

Fraction of detectable events with respect total ones:

$$\frac{N_s^{\uparrow}}{N_s} = \int d\boldsymbol{\theta} \, p_{pop}(\boldsymbol{\theta}|\boldsymbol{\lambda}) p(\rho^{\uparrow}|\boldsymbol{\theta})$$

 $p(\rho^{\uparrow}|\boldsymbol{\theta})$: probability for a source with $\boldsymbol{\theta}$ to be over detection threshold (like SNR or FAR).

I. Mandel, W. Farr, J. Gair, MNRAS **486** (2019) S. Vitale, D. Gerosa, W. Farr, S. Taylor, Springer (2021)

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

Further assumptions:

- 1. N_{tr} source events collected.
- **2.** Constant source rate: $\frac{dN_s}{dt} \simeq const$

Final goal

Find the posterior distribution on Λ given the set of detected sources $D = \{d_i\}_{i=1,...,N_{tr}}$:

 $p(\boldsymbol{\lambda}|\mathbf{D}) \propto p(\boldsymbol{D}|\boldsymbol{\lambda})p(\boldsymbol{\lambda})$

After marginalizing over N_s , assuming a $1/N_s$ prior.

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

Since $T(inst) \ll T(inspiral)$, we assume

that an ECO would reach χ_{crit} almost

immediately after formation.

SAPIENZA

SPINS AT FORMATION Beta distribution for both ECOs and BBHs

SPIN AT MERGER (THE ONES MEASURED)

- Beta with a gaussian peak on χ_{crit} for ECOs
- Unchanged for BHs (again Beta)

 $p_{pop}^{tot}(\chi|\Lambda, f_{eco}) = f_{eco} \ p_{pop}^{ECO}(\chi|\Lambda) + (1 - f_{eco}) \ p_{pop}^{BBH}(\chi|\Lambda)$

 $p_{pop}^{BBH}(\chi|\Lambda) = \beta(\chi|\alpha,\beta)$ $p_{pop}^{ECO}(\chi|\Lambda) = \lambda_{eco}\beta(\chi|\alpha,\beta)\Theta(\chi_{crit}-\chi) + (1-\lambda_{eco})\mathcal{N}(\chi|\chi_{crit},\sigma)$

 f_{eco} : fraction of ECOs included in the shape parameters $\pmb{\lambda}$

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

Simulations and main results

- Simulations carried out with ICAROGW (S. Mastrogiovanni et al. arXiv:2305.17973), a Python software for GW population inference.
- We performed **three** different simulations on O3 BBH events:
 - 1. Assuming a population of **100%** ECOs (BHs), namely $f_{eco} = 1$ ($f_{eco} = 0$);
 - 2. Assuming **mixed** population, f_{eco} free parameter to infer.
- We computed the Bayes factor for the various combinations:

$$K = \frac{p(\boldsymbol{D}|i)}{p(\boldsymbol{D}|j)'}$$
 with $i, j \in (BBH, ECO, MIXTURE)$.

K(mix / BBH) = 3.8 K(mix / ECO) = 5.4 K(BBH / ECO) = 1.4

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

Population of 100% ECOs

Marginalized posterior for the closeness parameter ε.

PRIOR FOR ϵ

Log-Uniform in $[10^{-40}, 10^{-4}]$

MAIN MESSAGE

- We can put a **lower limit** on ϵ in the case of $f_{eco} \equiv 1$: this is $\epsilon \simeq 10^{-5}$.
- Too low values would not explain some high-spin events of the GWTC-3 catalog, if only ECOs are assumed.

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

SAPIENZA UNIVERSITÀ DI ROMA	Event	$\stackrel{M}{(M_{\odot})}$	$\mathcal{M} \ (M_{\odot})$	$m_1 \ (M_{\odot})$	$m_2 \ (M_{\odot})$	$\chi_{ m eff}$	$D_{ m L}$ (Gpc)	z	${M_{ m f} \over (M_{\odot})}$	$\chi_{ m f}$	$\Delta\Omega \ ({ m deg}^2)$	SNR
situs Auden	$GW190408_{181802}$	$43.0^{+4.2}_{-3.0}$	$18.3^{+1.9}_{-1.2}$	$24.6^{+5.1}_{-3.4}$	$18.4^{+3.3}_{-3.6}$	$-0.03\substack{+0.14\\-0.19}$	$1.55\substack{+0.40 \\ -0.60}$	$0.29\substack{+0.06 \\ -0.10}$	$41.1^{+3.9}_{-2.8}$	$0.67\substack{+0.06 \\ -0.07}$	150	$15.3\substack{+0.2 \\ -0.3}$
	GW190412	$38.4^{+3.8}_{-3.7}$	$13.3\substack{+0.4 \\ -0.3}$	$30.1\substack{+4.7 \\ -5.1}$	$8.3\substack{+1.6 \\ -0.9}$	$0.25\substack{+0.08 \\ -0.11}$	$0.74\substack{+0.14 \\ -0.17}$	$0.15\substack{+0.03 \\ -0.03}$	$37.3^{+3.9}_{-3.8}$	$0.67\substack{+0.05 \\ -0.06}$	21	$18.9\substack{+0.2\\-0.3}$
	$GW190413_052954$	$58.6^{+13.3}_{-9.7}$	$24.6\substack{+5.5 \\ -4.1}$	$34.7^{+12.6}_{-8.1}$	$23.7\substack{+7.3 \\ -6.7}$	$-0.01\substack{+0.29\\-0.34}$	$3.55\substack{+2.27 \\ -1.66}$	$0.59\substack{+0.29 \\ -0.24}$	$56.0^{+12.5}_{-9.2}$	$0.68\substack{+0.12\\-0.13}$	1500	$8.9\substack{+0.4 \\ -0.7}$
	$GW190413_134308$	$78.8\substack{+17.4 \\ -11.9}$	$33.0^{+8.2}_{-5.4}$	$47.5^{+13.5}_{-10.7}$	$31.8\substack{+11.7 \\ -10.8}$	$-0.03\substack{+0.25\\-0.29}$	$4.45\substack{+2.48\\-2.12}$	$0.71\substack{+0.31 \\ -0.30}$	$75.5^{+16.4}_{-11.4}$	$0.68\substack{+0.10 \\ -0.12}$	730	$10.0\substack{+0.4 \\ -0.5}$
	$GW190421_{-2}13856$	$72.9^{+13.4}_{-9.2}$	$31.2^{+5.9}_{-4.2}$	$41.3^{+10.4}_{-6.9}$	$31.9^{+8.0}_{-8.8}$	$-0.06\substack{+0.22\\-0.27}$	$2.88\substack{+1.37 \\ -1.38}$	$0.49\substack{+0.19 \\ -0.21}$	$69.7^{+12.5}_{-8.7}$	$0.67\substack{+0.10\\-0.11}$	1200	$10.7\substack{+0.2 \\ -0.4}$
	$GW190424_{-}180648$	$72.6^{+13.3}_{-10.7}$	$31.0\substack{+5.8 \\ -4.6}$	$40.5^{+11.1}_{-7.3}$	$31.8^{+7.6}_{-7.7}$	$0.13\substack{+0.22 \\ -0.22}$	$2.20\substack{+1.58 \\ -1.16}$	$0.39\substack{+0.23 \\ -0.19}$	$68.9^{+12.4}_{-10.1}$	$0.74\substack{+0.09 \\ -0.09}$	28000	$10.4\substack{+0.2 \\ -0.4}$
	GW190425	$3.4^{+0.3}_{-0.1}$	$1.44\substack{+0.02\\-0.02}$	$2.0\substack{+0.6 \\ -0.3}$	$1.4^{+0.3}_{-0.3}$	$0.06\substack{+0.11 \\ -0.05}$	$0.16\substack{+0.07 \\ -0.07}$	$0.03\substack{+0.01 \\ -0.02}$	_	_	10000	$12.4_{-0.4}^{+0.3}$
	$GW190426_{-}152155$	$7.2^{+3.5}_{-1.5}$	$2.41\substack{+0.08 \\ -0.08}$	$5.7^{+3.9}_{-2.3}$	$1.5\substack{+0.8 \\ -0.5}$	$-0.03\substack{+0.32\\-0.30}$	$0.37\substack{+0.18 \\ -0.16}$	$0.08\substack{+0.04 \\ -0.03}$	_	_	1300	$8.7\substack{+0.5 \\ -0.6}$
An example of event of the	$GW190503_{-185404}$	$71.7\substack{+9.4 \\ -8.3}$	$30.2^{+4.2}_{-4.2}$	$43.3_{-8.1}^{+9.2}$	$28.4_{-8.0}^{+7.7}$	$-0.03\substack{+0.20\\-0.26}$	$1.45\substack{+0.69\\-0.63}$	$0.27\substack{+0.11 \\ -0.11}$	$68.6^{+8.8}_{-7.7}$	$0.66\substack{+0.09\\-0.12}$	94	$12.4_{-0.3}^{+0.2}$
catalog with high spin evidence	$GW190512_{-180714}$	$35.9^{+3.8}_{-3.5}$	$14.6^{+1.3}_{-1.0}$	$23.3^{+5.3}_{-5.8}$	$12.6^{+3.6}_{-2.5}$	$0.03\substack{+0.12 \\ -0.13}$	$1.43\substack{+0.55\\-0.55}$	$0.27\substack{+0.09 \\ -0.10}$	$34.5^{+3.8}_{-3.5}$	$0.65\substack{+0.07 \\ -0.07}$	220	$12.2_{-0.4}^{+0.2}$
catalog with ingh spin concence	GW190513_205428	$53.9^{+8.6}_{-5.9}$	$21.6^{+3.8}_{-1.9}$	$35.7^{+9.5}_{-9.2}$	$18.0^{+7.7}_{-4.1}$	$0.11\substack{+0.28 \\ -0.17}$	$2.06\substack{+0.88\\-0.80}$	$0.37\substack{+0.13 \\ -0.13}$	$51.6^{+8.2}_{-5.8}$	$0.68\substack{+0.14 \\ -0.12}$	520	$12.9\substack{+0.3 \\ -0.4}$
	$GW190514_065416$	$67.2^{+18.7}_{-10.8}$	$28.5_{-4.8}^{+7.9}$	$39.0^{+14.7}_{-8.2}$	$28.4_{-8.8}^{+9.3}$	$-0.19\substack{+0.29\\-0.32}$	$4.13\substack{+2.65\\-2.17}$	$0.67\substack{+0.33 \\ -0.31}$	$64.5^{+17.9}_{-10.4}$	$0.63\substack{+0.11 \\ -0.15}$	3000	$8.2^{+0.3}_{-0.6}$
	GW190517_055101	$63.5^{+9.6}_{-9.6}$	$26.6^{+4.0}_{-4.0}$	$37.4^{+11.7}_{-7.6}$	$25.3^{+7.0}_{-7.3}$	$0.52\substack{+0.19 \\ -0.19}$	$1.86\substack{+1.62\\-0.84}$	$0.34\substack{+0.24 \\ -0.14}$	$59.3^{+9.1}_{-8.9}$	$0.87\substack{+0.05 \\ -0.07}$	470	$10.7\substack{+0.4 \\ -0.6}$
	GW190519_153544	$106.6^{+13.5}_{-14.8}$	$44.5^{+6.4}_{-7.1}$	$66.0^{+10.7}_{-12.0}$	$40.5^{+11.0}_{-11.1}$	$0.31\substack{+0.20\\-0.22}$	$2.53^{+1.83}_{-0.92}$	$0.44_{-0.14}^{+0.25}$	$101.0^{+12.4}_{-13.3}$	$^{4}_{3}0.79^{+0.07}_{-0.13}$	860	$15.6^{+0.2}_{-0.3}$
	GW190521	$163.9^{+39.2}_{-23.5}$	$69.2^{+17.0}_{-10.6}$	$95.3^{+28.7}_{-18.9}$	$69.0\substack{+22.7\\-23.1}$	$0.03\substack{+0.32 \\ -0.39}$	$3.92\substack{+2.19\\-1.95}$	$0.64\substack{+0.28 \\ -0.28}$	$156.3^{+36.3}_{-22.4}$	$^{8}_{4}0.71^{+0.12}_{-0.16}$	1000	$14.2\substack{+0.3 \\ -0.3}$
	GW190521_074359	$74.7^{+7.0}_{-4.8}$	$32.1^{+3.2}_{-2.5}$	$42.2_{-4.8}^{+5.9}$	$32.8^{+5.4}_{-6.4}$	$0.09\substack{+0.10 \\ -0.13}$	$1.24\substack{+0.40\\-0.57}$	$0.24\substack{+0.07 \\ -0.10}$	$71.0\substack{+6.5 \\ -4.4}$	$0.72\substack{+0.05 \\ -0.07}$	550	$25.8^{+0.1}_{-0.2}$
	GW190527_092055	$59.1^{+21.3}_{-9.8}$	$24.3^{+9.1}_{-4.2}$	$36.5^{+16.4}_{-9.0}$	$22.6^{+10.5}_{-8.1}$	$0.11\substack{+0.28\\-0.28}$	$2.49\substack{+2.48 \\ -1.24}$	$0.44\substack{+0.34 \\ -0.20}$	$56.4^{+20.2}_{-9.3}$	$0.71\substack{+0.12 \\ -0.16}$	3700	$8.1^{+0.3}_{-0.9}$
	GW190602_175927	$116.3^{+19.0}_{-15.6}$	$49.1^{+9.1}_{-8.5}$	$69.1^{+15.7}_{-13.0}$	$47.8^{+14.3}_{-17.4}$	$0.07\substack{+0.25 \\ -0.24}$	$2.69^{+1.79}_{-1.12}$	$0.47^{+0.25}_{-0.17}$	$110.9^{+17.7}_{-14.9}$	$50.70^{+0.10}_{-0.14}$	690	$12.8^{+0.2}_{-0.3}$
	GW190620_030421	$92.1^{+18.5}_{-13.1}$	$38.3^{+8.3}_{-6.5}$	$57.1^{+16.0}_{-12.7}$	$35.5^{+12.2}_{-12.3}$	$0.33\substack{+0.22\\-0.25}$	$2.81\substack{+1.68 \\ -1.31}$	$0.49\substack{+0.23 \\ -0.20}$	$87.2^{+16.8}_{-12.1}$	$0.79\substack{+0.08 \\ -0.15}$	7200	$12.1\substack{+0.3 \\ -0.4}$
	GW190630_185205	$59.1_{-4.8}^{+4.6}$	$24.9^{+2.1}_{-2.1}$	$35.1^{+6.9}_{-5.6}$	$23.7^{+5.2}_{-5.1}$	$0.10\substack{+0.12 \\ -0.13}$	$0.89\substack{+0.56 \\ -0.37}$	$0.18\substack{+0.10 \\ -0.07}$	$56.4^{+4.4}_{-4.6}$	$0.70^{+0.05}_{-0.07}$	1200	$15.6^{+0.2}_{-0.3}$
CREDIT	GW190701_203306	$94.3^{+12.1}_{-9.5}$	$40.3_{-4.9}^{+5.4}$	$53.9^{+11.8}_{-8.0}$	$40.8^{+8.7}_{-12.0}$	$-0.07\substack{+0.23\\-0.29}$	$2.06\substack{+0.76 \\ -0.73}$	$0.37\substack{+0.11 \\ -0.12}$	$90.2^{+11.3}_{-8.9}$	$0.66\substack{+0.09\\-0.13}$	46	$11.3^{+0.2}_{-0.3}$
R Abbot at al. Phys Rev Y 11 (2021) 021053	GW190706_222641	$104.1^{+20.2}_{-13.9}$	$42.7^{+10.0}_{-7.0}$	$67.0^{+14.6}_{-16.2}$	$38.2^{+14.6}_{-13.3}$	$0.28\substack{+0.26 \\ -0.29}$	$4.42_{-1.93}^{+2.59}$	$0.71\substack{+0.32 \\ -0.27}$	$99.0^{+18.3}_{-13.5}$	$0.78\substack{+0.09 \\ -0.18}$	650	$12.6\substack{+0.2\\-0.4}$
<u>A. Abbol et ul. 1 hys. Kev. A 11 (2021)</u> 021055	GW190707_093326	$20.1^{+1.9}_{-1.3}$	$8.5^{+0.6}_{-0.5}$	$11.6^{+3.3}_{-1.7}$	$8.4^{+1.4}_{-1.7}$	$-0.05\substack{+0.10\\-0.08}$	$0.77\substack{+0.38\\-0.37}$	$0.16\substack{+0.07 \\ -0.07}$	$19.2^{+1.9}_{-1.3}$	$0.66\substack{+0.03 \\ -0.04}$	1300	$13.3\substack{+0.2 \\ -0.4}$
	$GW190708_232457$	$30.9^{+2.5}_{-1.8}$	$13.2\substack{+0.9 \\ -0.6}$	$17.6^{+4.7}_{-2.3}$	$13.2\substack{+2.0 \\ -2.7}$	$0.02\substack{+0.10 \\ -0.08}$	$0.88\substack{+0.33\\-0.39}$	$0.18\substack{+0.06 \\ -0.07}$	$29.5^{+2.5}_{-1.8}$	$0.69\substack{+0.04 \\ -0.04}$	14000	$13.1\substack{+0.2 \\ -0.3}$

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

Mixture model

Marginalized bidimensional posterior for the closeness parameter ε and the fraction of ECOs, for a mixed population

GOAL

- We keep f_{eco} as a free parameter to infer to.
- Which **constraints** can we put on f_{eco} and ϵ ?

We can **exclude** the **region** of **high-fraction**, **ultra-compact** ECOs ($f_{eco} \simeq 1, \varepsilon \ll 1$):

Particularly, no **more** than 60% of objects can be ECOs in the **ultra-compact region** ($\varepsilon < 10^{-30}$)

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

Implied distribution on χ_{crit}

 ONLY ECOs: shifted toward higher values, recover high spin events

 MIXTURE: dominated by prior on *e*. High-spin events are handled by the possibility of being a BH.

Posterior distribution mapped on $\chi_{crit}(\epsilon)$ for the two models, compared with the prior, that reflects the log-uniform prior on ϵ .

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

- **Suppose** we have a new astrophysical event: what is the probability that this is an ECO (BBH)?
- What we know? The previous events with which we computed the posterior on population parameters
- We basically want to compute the following:

$$P(ECO|\boldsymbol{D},d) = \int P(\boldsymbol{\lambda}|\boldsymbol{D}) \left[\int P(ECO|\boldsymbol{\chi},\boldsymbol{\lambda}) P(\boldsymbol{\chi}|d,\boldsymbol{\lambda}) d\boldsymbol{\chi} \right] d\boldsymbol{\lambda}$$

D: all the previous data containing CBC events, used to compute the hyperposterior on λ

d: data containing the new event

We compute it for all the events of the catalog used for the analysis

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

SAPIENZA UNIVERSITÀ DI ROMA Probability of being a certain object (2/2)

Probability of being an ECO for each of the two objects of the O3 binaries

Event ID	$p_1(\text{ECO} \boldsymbol{D}, d)$	$p_2(\text{ECO} \boldsymbol{D}, d)$	GW191105_143521	$0.44_{-0.42}^{+0.52}$	$0.42^{+0.51}_{-0.40}$
GW190408 181802	$0.41^{+0.51}$	$0.40^{+0.51}$	GW191109_010717	$0.16^{+0.21}_{-0.16}$	$0.30_{-0.29}^{+0.37}$
GW190412	$0.25^{+0.43}$	$0.32^{+0.41}$	GW191127_050227	$0.29_{-0.29}^{+0.37}$	$0.36_{-0.35}^{+0.43}$
GW100413 134308	0.25 - 0.24 0.35 $+ 0.43$	$0.32_{-0.31}$	GW191129_134029	$0.43_{-0.42}^{+0.52}$	$0.42^{+0.50}_{-0.40}$
GW190421 213856	$0.33_{-0.34}$ 0.38 ^{+0.48}	$0.33_{-0.38}$ 0.30 ^{+0.47}	GW191204_171526	$0.36_{-0.35}^{+0.51}$	$0.36_{-0.36}^{+0.47}$
GW100502 185404	$0.38_{-0.37}$ 0.20 $^{+0.50}$	$0.39_{-0.38}$ 0.20 ^{+0.46}	GW191204_171526	$0.36^{+0.51}_{-0.35}$	$0.36^{+0.47}_{-0.36}$
GW190505_185404	$0.39_{-0.38}^{+0.52}$	$0.39_{-0.38}^{+0.51}$	GW191215_223052	$0.38^{+0.48}_{-0.27}$	$0.40^{+0.48}_{-0.20}$
GW190512_180714	$0.44_{-0.43}^{+0.43}$	$0.40_{-0.39}^{+0.47}$	GW191216 213338	$0.43^{\pm 0.54}$	$0.42^{+0.51}$
GW190513_205428	$0.41^{+0.30}_{-0.39}$	$0.38^{+0.41}_{-0.37}$	GW101000 000505	0.19 - 0.42	0.12 - 0.40
GW190517_055101	$0.02^{+0.03}_{-0.02}$	$0.33^{+0.42}_{-0.32}$	GW191222_033537	$0.41_{-0.39}$	$0.40_{-0.39}$
$GW190519_153544$	$0.23\substack{+0.29\\-0.22}$	$0.32\substack{+0.39 \\ -0.31}$	GW191230_180458	$0.39_{-0.38}^{+0.46}$	$0.37_{-0.36}^{+0.47}$
GW190521	$0.28\substack{+0.37\\-0.28}$	$0.34_{-0.33}^{+0.42}$	$GW200112_155838$	$0.41_{-0.40}^{+0.51}$	$0.41^{+0.49}_{-0.40}$
GW190521_074359	$0.40\substack{+0.50\\-0.39}$	$0.37\substack{+0.48\\-0.36}$	GW200128_022011	$0.34_{-0.33}^{+0.43}$	$0.37_{-0.36}^{+0.46}$
GW190527_092055	$0.37^{+0.48}_{-0.36}$	$0.38^{+0.46}_{-0.37}$	$GW200129_065458$	$0.36^{+0.48}_{-0.36}$	$0.38^{+0.49}_{-0.37}$
$GW190602_{-}175927$	$0.39_{-0.38}^{+0.49}$	$0.37\substack{+0.45\\-0.36}$	$GW200202_154313$	$0.44_{-0.43}^{+0.52}$	$0.41_{-0.40}^{+0.51}$

The two prbabilities p_1 and p_2 are referred to the two objects of the binary. The **high-spin** events of the catalog can be recognized as black holes (at least the primary object). The heaviest object of GW190517_055101 is ~ 100% a black hole.

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

Conclusions

- If all the compact objects are ECOs, epsilon cannot be lower than 10⁻⁵ at 95% credible interval. We exclude a population of ultracompact exotic objects;
- □ If mixed population: no more than 60% of ECOs can be present if ε < 10⁻³⁰ (namely ultracompact objects);
- The heaviest object of the GW190517_055101 binary is ~100% a BH with all the models we tried.

What's next?

- Employ a **reflectivity-dependent** model.
- Analyse simulated signals from a mixed population, and study future forecast.
- **FOLLOW-UP PROJECT**: Check the presence of biases due to potential difference among BBH and ECO waveforms.

Adriano Frattale Mascioli GraSP 2023, Pisa

"Searching for evidences of Exotic Compact Objects from the spin distribution of compact binary coalescences"

Thanks for the attention !

Adriano Frattale Mascioli Contact: adriano.frattalemascioli@uniroma1.it

Sapienza University of Rome & INFN-Roma1

GraSP, 25/10/2023 Pisa

