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inner crust (1 km)
outer core (3-4 km) superfluid neutrons and vortices

superfluid neutrons and vortices vortex pinning and nuclear pasta?

deep core (5-6 km) superconducting protons and fluxtubes
hyperons and/or deconfined quarks?

color superconductor?

4§
}A outer crust (100 m)

lattice of neutron-rich nuclei

b

5x10"g/cm’

Gravity, holds the star together (gravitational waves!)
Electromagnetism, makes pulsars pulse and magnetars flare 2x10"g/ecm’
. . : : " 10"g/em’
Strong interaction, determines internal composition

Weak interaction, affects reaction rates - cooling and internal viscosity



The main idea of asteroseismology is to match observed stellar

oscillations against theory to gain insight into the involved physics.

® solaroscillations observed in 1960s and identified as modes in
the mid 1970s (5 minute range)

® helioseismology: GONG network and SOHO satellite in the
1990s (note: Rossby waves in the Earth's ocean)

® space-based photometry with CoRoT and Kepler in the 2000s
(high-quality seismology data for hundreds of main-sequence
and subgiant stars and 10,000s of red giants)

® NASAsTESS mission and ESAs PLATO mission take this further
(characterise host stars in exoplanet systems)

Want to use seismology strateqgy to probe neutron stars
using gravitational-wave data.
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From the GW perspective we need global modes which involve significant density variations.

o f-mode: Fundamental oscillation of the star; scales with the average density,

w,/(2r) ~\/ GMI/R> ~ 1 —2kHz
® p-modes: Restored by the pressure of the tluid (speed of sound); higher frequencies

e g-modes: Restored by buoyancy associated with temperature/composition gradients; lower
frequencies, w,,/(2x) ~ 100 Hz.

e inertial modes (including the r-mode): Restored by rotation; may be driven unstable by GW
emission; @, ~ £2.

o j-modes: Oscillation feature associated with the core-crust interface; may induce crust fractures
during binary inspiral and trigger short gamma-ray bursts; @, /(27) ~ 100 Hz.
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tidal deformability
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GW signal from binary neutron stars differs from that
of black holes due to the tidal deformability.
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Effect of static tide enters at 5PN order through the
induced quadrupole moment.
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dynamical tides

100;‘ s ‘ The dynamical tide is represented by resonances
oS o 1 withindividual oscillation modes
4F ® G,=V. = CL . :
105 Y = o004 Need global modes which involve significant density
el variations. Overlap integral
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universal f-Love relation
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[t the fundamental mode dominates the sum, we expect a universal relation between mode
frequency and tidal deformability. Numerical evidence that this relation is very robust.



The g-modes carry information about the internal

beyond mass and radius

. 0.01
matter composition.
Sensitive to deviation from chemical equilibrium,
e.g. the (local) Brunt-Vaisala frequency
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Merger dynamics should be within reach of
next-generation detectors.

Requires robust nonlinear simulations
with a reliable physics implementation

Assuming a 3-parameter model
p =pn, e, Y, = n./ny)and stepping
up the complexity, we may

® assume that reactions are fast enough that
the matter remains in equilibrium, or

® slow enough that the composition is
frozen, or

* add whatever other physics we may be
interested in...

mergers
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another "universal relation’

Numerical simulations suggest a more
"surprising” universal relation, linking the

Binary Mass M

2.450 2.700
2500 ©Q 2.750 tidal deformability (=cold EoS) to the peak
2.550 2.800 ,
2600 @ 2.850 frequency from the merger dynamics (=hot
2.650
FoS).
The origin of this relation is not well
understood.

100 500 300 100 Also do not (yet) know how “robust” it s. ..

[Bernuzzi+] K9



| have outlined:

® the main idea behind asteroseismology and why it is P - AN
relevant for GW astronomy (now and in the future) A7 R

1643~ 1727

| have not talked about:

® the technical state of the art (Newtonian vs relativity/
phenomenology vs precision)

® nonlinear tides (p-g instability?) .

Einstein

® other scenarios, e.g. core collapse supernovae or the
gravitational-wave driven instability (f-mode/r-mode) in
(isolated) spinning neutron stars

® starquakes/glitches/GW searches

® neutron star ocean modes/crust seismology/X-rays



