Nils Andersson

A gravitational-wave perspective on neutron-star seismology

Weak interaction, affects reaction rates - cooling and internal viscosity

The main idea of **asteroseismology** is to match observed stellar oscillations against theory to gain insight into the involved physics.

- solar oscillations observed in 1960s and identified as modes in the mid 1970s (5 minute range)
- helioseismology: GONG network and SOHO satellite in the 1990s (note: Rossby waves in the Earth's ocean)
- space-based photometry with CoRoT and Kepler in the 2000s (high-quality seismology data for hundreds of main-sequence and subgiant stars and 10,000s of red giants)
- NASAs TESS mission and ESAs PLATO mission take this further (characterise host stars in exoplanet systems)

Want to use seismology strategy to probe neutron stars using gravitational-wave data.

From the GW perspective we need global modes which involve significant density variations.

- $\omega_{\alpha}/(2\pi) \sim \sqrt{GM/R^3} \sim 1 2 \text{ kHz}$
- *• p***-modes**: Restored by the pressure of the fluid (speed of sound); higher frequencies
- frequencies, $\omega_{\alpha}/(2\pi) \sim 100 \,\text{Hz}$.
- emission; $\omega_{\alpha} \sim \Omega$.
- during binary inspiral and trigger short gamma-ray bursts; $\omega_\alpha^{}/ (2\pi) \sim 100\,\mathrm{Hz}$.

*• f***-mode**: Fundamental oscillation of the star; scales with the average density, .

*• g***-modes**: Restored by buoyancy associated with temperature/composition gradients; lower

• **inertial modes** (including the *r***-mode**): Restored by rotation; may be driven unstable by GW

*• i***-modes**: Oscillation feature associated with the core-crust interface; may induce crust fractures

[adapted from Read]

binary inspiral

 $f(Hz)$

tidal deformability

GW signal from binary neutron stars differs from that of black holes due to the **tidal deformability**.

Effect of static tide enters at 5PN order through the induced quadrupole moment.

Characterised by the **Love numbers**

$$
\Lambda_A = \frac{2}{3} k_{2A} \left(\frac{c^2 R_A}{GM_A} \right)^5
$$

dynamical tides

The **dynamical tide** is represented by resonances with individual oscillation modes.

Need global modes which involve significant density variations. Overlap integral

leads to the effective Love number:

Results in significant enhancement of tidal imprint

$$
I_{\alpha} \equiv \int_0^R \delta \rho_{\alpha}(r) r^{l+2} dr
$$

$$
I_{\alpha} \equiv \int_{0}^{R} \delta \rho_{\alpha}(r) r^{l+2} dr
$$

leads to the effective Love number:

$$
k_{lm} = \frac{2\pi G}{(2l+1)R^{2l+1}} \sum_{\alpha'} \frac{I_{\alpha}^{2}}{\mathscr{A}_{\alpha}^{2}[\omega_{\alpha}^{2} - (m\Omega)]}
$$

Results in significant enhancement of tidal imprint
near merger.

In the static limit $(\Omega \rightarrow 0)$ we get

universal f-Love relation

If the fundamental mode dominates the sum, we expect a universal relation between mode frequency and tidal deformability. Numerical evidence that this relation is very robust.

$$
k_l = \frac{2\pi G}{(2l+1)R^{2l+1}} \sum_{\alpha'} \frac{I_{\alpha}^2}{\mathscr{A}_{\alpha}^2 \omega_{\alpha}^2}
$$

beyond mass and radius

The g-modes carry information about the internal matter composition.

Sensitive to deviation from chemical equilibrium, e.g. the (local) Brunt-Väisälä frequency

mergers
Merger dynamics should be within reach of next-generation detectors.

Requires **robust nonlinear simulations** with a reliable physics implementation Assuming a 3-parameter model

 $p = p(n, \varepsilon, Y_e = n_e/n_b)$ and stepping up the complexity, we may e (n_b)

- assume that reactions are fast enough that the matter remains in equilibrium, or
- slow enough that the composition is frozen, or
- add whatever other physics we may be interested in…

an
ner
pri
de).
ers
dc ot
Calles
Finally
on
Oo *fim*
im
rom
rom , "

, u

ive

is r

is r

t) k er
Sug
Jat
Jer re
and ink
am
we we lation
ore
cs (
'it the eak
=
html
interesting results $\int_0^{\prime\prime}$ Numerical simulations suggest a more "surprising" universal relation, linking the tidal deformability (=cold EoS) to the peak frequency from the merger dynamics (=hot EoS).

 $\overline{1}$ \mathbf{u} home" Also do not (yet) know how "robust" it is…

 (21.81) of tl
|
(ye 10 $\overline{\mathsf{S}}$ The origin of this relation is not well understood.

another "universal relation"

I have outlined:

• the main idea behind asteroseismology and why it is relevant for GW astronomy (now and in the future)

I have not talked about:

- the technical state of the art (Newtonian vs relativity/ phenomenology vs precision)
- nonlinear tides (p-g instability?)
- other scenarios, e.g. core collapse supernovae or the gravitational-wave driven instability (f-mode/r-mode) in (isolated) spinning neutron stars
- starquakes/glitches/GW searches
- neutron star ocean modes/crust seismology/X-rays

Sir Isaac Newton 1643-1727 Albert Einstein 1879 – 1955

