Happy birthday double pulsar! 20 years testing gravity with a special clock

© M. Kramer

Marta Burgay INAF Cagliari

Testing GR

Testing GR

- Predicting ToAs on the basis of a model
- Measuring Times of Arrival (ToAs) from repeated obs
- Creating timing residuals
- Fitting for model parameters to remove trends

- Predicting ToAs on the basis of a model
- Measuring Times of Arrival (ToAs) from repeated obs
- Creating timing residuals
- Fitting for model parameters to remove trends

- Predicting ToAs on the basis of a model
- Measuring Times of Arrival (ToAs) from repeated obs
- Creating timing residuals
- Fitting for model parameters to remove trends

- Predicting ToAs on the basis of a model
- Measuring Times of Arrival (ToAs) from repeated obs
- Creating timing residuals
- Fitting for model parameters to remove trends

- Predicting ToAs on the basis of a model
- Measuring Times of Arrival (ToAs) from repeated obs
- Creating timing residuals
- Fitting for model parameters to remove trends

- Predicting ToAs on the basis of a model
- Measuring Times of Arrival (ToAs) from repeated obs
- Creating timing residuals
- Fitting for model parameters to remove trends

For some binary pulsars, the accuracy of the ToA data is so high that - by using only the keplerian description - one cannot obtain an acceptable timing solution.

Additional physics is needed and can be tested

Post-Keplerian (PK) formalism [Damour & Deruelle 1986]

Post-Keplerian (PK) formalism [Damour & Deruelle 1986]

Gr. redshift & time dilation - $\boldsymbol{\gamma}$

Shapiro Delay r & s

Orbital decay P_b

$$\begin{split} \dot{\omega} &= 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_{\odot}M)^{2/3} (1-e^2)^{-1}, \qquad \text{Periastron precession} \\ \gamma &= e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c \left(m_p + 2m_c\right), \qquad \text{Time dilation & gravitational redshift} \\ \dot{P}_b &= -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (1 \text{Orbital period decay}^{-3} m_p m_c M^{-1/3}, \\ r &= T_{\odot} m_c, \qquad \qquad \text{Shapiro delay (range)} \\ s &= x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{2/3} m_c^{-1}. \qquad \qquad \text{Shapiro delay (shape)} \end{split}$$

$$\begin{split} \dot{\omega} &= 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_{\odot}M)^{2/3} (1-e^2)^{-1}, \qquad \text{Periastron precession} \\ \gamma &= e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c \left(m_p + 2m_c\right), \qquad \text{Time dilation & gravitational redshift} \\ \dot{P}_b &= -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (10\text{rbital period decay}^{-3} m_p m_c M^{-1/3}, \\ r &= T_{\odot} m_c, \qquad \qquad \text{Shapiro delay (range)} \\ s &= x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{2/3} m_c^{-1}. \qquad \qquad \text{Shapiro delay (shape)} \end{split}$$

$$\dot{\omega} = 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_c M)^{2/3} (1 - e^2)^{-1}, \qquad \text{Periastron precession}$$

$$\gamma = e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c (m_p + 2m_c), \qquad \text{Time dilation & gravitational redshift}$$

$$\dot{P}_b = -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (10\text{rbital period decay}^{-3} m_p m_c M^{-1/3}, \\ r = T_{\odot} m_c, \qquad \qquad \text{Shapiro delay (range)}$$

$$s = x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{2/3} m_c^{-1}. \qquad \text{Shapiro delay (shape)}$$

$$\dot{\omega} = 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_c M)^{2/3} (1 - e^2)^{-1}, \qquad \text{Periastron precession}$$

$$\gamma = e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c (m_p + 2m_c), \qquad \text{Time dilation & gravitational redshift}$$

$$\dot{P}_b = -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (10\text{rbital period decay}^{-1/3} m_p m_c M^{-1/3}, \\ r = T_{\odot} m_c, \qquad \qquad \text{Shapiro delay (range)}$$

$$s = x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{3/3} m_c^{-1}. \qquad \text{Shapiro delay (shape)}$$

$$\dot{\omega} = 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_0 M)^{2/3} (1 - e^2)^{-1}, \qquad \text{Periastron precession}$$

$$\gamma = e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c (m_p) + 2m_c), \qquad \text{Time dilation & gravitational redshift}$$

$$\dot{P}_b = -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (1 \text{Orbital period decay}^{-1/3} m_p m_c M^{-1/3}, \\ r = T_{\odot} m_c, \qquad \qquad \text{Shapiro delay (range)}$$

$$s = x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{3/3} m_c^{-1}. \qquad \text{Shapiro delay (shape)}$$

n - 2 GR tests!

PSR B1913+16

- PSR+NS
- P_{spin} = 59 ms
- P_{orb} = 7.8 hr
- Ecc = 0.61
- 3 PK parameters: $\dot{\omega}$, γ , \dot{P}_{b}

PSR B1913+16

- PSR+NS
- P_{spin} = 59 ms
- P_{orb} = 7.8 hr
- Ecc = 0.61
- 3 PK parameters: $\dot{\omega}$, γ , \dot{P}_{b}

PSR B1913+16

- PSR+NS
- P_{spin} = 59 ms
- P_{orb} = 7.8 hr
- Ecc = 0.61
- 3 PK parameters: $\dot{\omega}$, γ , \dot{P}_{b}

PSR B1913+16

- PSR+NS
- P_{spin} = 59 ms
- P_{orb} = 7.8 hr
- Ecc = 0.61
- 3 PK parameters: $\dot{\omega}$, γ , \dot{P}_{b}

PSR J0737-3039A/B

Discovered in 2003 [Burgay et al '03; Lyne et al. '04]

- PSR+PSR!
- $P_{spin}A = 23 \text{ ms}$
- P_{spin}B = 2.7 s
- P_{orb} = 2.4 hr
- Ecc = 0.09
- Orb v = 0.001 c
- *i* = 89.35°

Prospects for timing are excellent:

- precision $\omega \approx \text{time}^{1.5} P_{b}$
- precision $\gamma \approx \text{time}^{1.5} P_b^{1.3}$
- precision $P_b \approx time^{2.5} P_b^3$
- precision r, s \approx time^{0.5}

Prospects for timing are excellent:

- precision $\omega \approx \text{time}^{1.5} P_{b}$
- precision $\gamma \approx \text{time}^{1.5} P_b^{1.3}$
- precision $P_b \approx time^{2.5} P_b^3$
- precision r, s \approx time^{0.5}

Time = 20 years!

Sops

• Kramer et al 2021: 1 million ToAs!

PHYSICAL REVIEW X 11, 041050 (2021)

Featured in Physics

Strong-Field Gravity Tests with the Double Pulsar

M. Kramere,^{1,2,*} I. H. Stairse,³ R. N. Manchestere,⁴ N. Wexe,¹ A. T. Dellere,^{5,6} W. A. Colese,⁷ M. Alie,^{1,8} M. Burgaye,⁹ F. Camiloe,¹⁰ I. Cognarde,^{11,12} T. Damoure,¹³ G. Desvignese,^{14,1} R. D. Ferdman,¹⁵ P. C. C. Freiree,¹ S. Grondine,^{3,16} L. Guillemote,^{11,12} G. B. Hobbs,⁴ G. Janssene,^{17,18} R. Karuppusamye,¹ D. R. Lorimere,¹⁹ A. G. Lyne,² J. W. McKeee,^{1,20} M. McLaughline,¹⁹ L. E. Münche,¹ B. B. P. Pererae,²¹ N. Pole,^{19,22} A. Possentie,^{9,23} J. Sarkissian,⁴ B. W. Stapperse,² and G. Theureau^{11,12,24}

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!

PHYSICAL REVIEW X 11, 041050 (2021)
Featured in Physics
Strong-Field Gravity Tests with the Double Pulsar
M. Kramere, ^{1,2,*} I. H. Stairse, ³ R. N. Manchestere, ⁴ N. Wexe, ¹ A. T. Dellere, ^{5,6} W. A. Colese, ⁷ M. Alie, ^{1,8} M. Burgaye, ⁹ F. Camiloe, ¹⁰ I. Cognarde, ^{11,12} T. Damoure, ¹³ G. Desvignese, ^{14,1} R. D. Ferdman, ¹⁵ P. C. C. Freiree, ¹ S. Grondine, ^{3,16} L. Guillemote, ^{11,12} G. B. Hobbs, ⁴ G. Janssene, ^{17,18} R. Karuppusamye, ¹ D. R. Lorimere, ¹⁹ A. G. Lyne, ² J. W. McKeee, ^{1,20} M. McLaughline, ¹⁹ L. E. Münche, ¹ B. B. P. Pererae, ²¹ N. Pole, ^{19,22} A. Possentie, ^{9,23} J. Sarkissian, ⁴ B. W. Stapperse, ² and G. Theureau

Featured in Physics

PHYSICAL REVIEW X 11, 041050 (2021)

Strong-Field Gravity Tests with the Double Pulsar

M. Kramer[©],^{1,2*} I. H. Stairs[©],³ R. N. Manchester[©],⁴ N. Wex[©],¹ A. T. Deller[©],^{5,6} W. A. Coles[®],⁷ M. Ali[©],^{1,8} M. Burgay[©],⁹ F. Camilo[©],¹⁰ I. Cognard[©],^{11,12} T. Damour[©],¹³ G. Desvignes[®],^{14,1} R. D. Ferdman,¹⁵ P. C. C. Freire[©],¹ S. Grondin[©],^{3,16} L. Guillemot[®],^{11,12} G. B. Hobbs,⁴ G. Janssen[©],^{17,18} R. Karuppusamy[©],¹ D. R. Lorimer[®],¹⁹ A. G. Lyne,² J. W. McKee[©],^{1,20} M. McLaughlin[®],¹⁹ L. E. Münch⁰,¹ B. B. P. Perera[©],²¹ N. Pol[©],^{19,22} A. Possenti[©],^{9,23} J. Sarkissian,⁴ B. W. Stappers[©],² and G. Theureau^{11,12,24}

B. W. Stappers⁽⁰⁾,² and G. Theureau¹

- Kramer et al 2021: 1 million ToAs! \bullet
- Precision higher than ever! \bullet
 - 1. GR tested at 99.99%

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%

Precision so high that we need to take into account relativistic mass loss

8.4 Million tons/s — 3.2 x 10^{-21} M_A/s

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order

PHYSICAL REVIEW X 11, 041050 (2021)
Featured in Physics
Strong-Field Gravity Tests with the Double Pulsar
M. Kramer [©] , ^{1,2,*} I. H. Stairs [©] , ³ R. N. Manchester [©] , ⁴ N. Wex [®] , ¹ A. T. Deller [®] , ^{5,6} W. A. Coles [®] , ⁷ M. Ali [©] , ^{1,8} M. Burgay [©] , ⁵ F. Camilo [®] , ¹⁰ I. Cognard [®] , ^{11,12} T. Damour [®] , ¹³ G. Desvignes [®] , ^{14,1} R. D. Ferdman, ¹⁵ P. C. C. Freire [®] , ¹ S. Grondin [®] , ^{3,16} L. Guillemot [®] , ^{11,12} G. B. Hobbs, ⁴ G. Janssen [®] , ^{17,18} R. Karuppusamy [®] , ¹ D. R. Lorimer [®] , ¹⁹ A. G. Lyne, ² J. W. McKee [®] , ^{1,20} M. McLaughlin [®] , ¹⁹ L. E. Münch [®] , ¹ B. B. P. Perera [®] , ²¹ N. Pol [®] , ^{19,22} A. Possenti [®] , ^{9,23} J. Sarkissian, ⁴ B. W. Stappers [®] , ² and G. Theureau ^{11,12,24}

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order

PHYSICAL REVIEW X 11, 041050 (2021)		
Featured in Physics		
Strong-Field Gravity Tests with the Double Pulsar		
M. Kramere, ^{1,2,*} I. H. Stairse, ³ R. N. Manchestere, ⁴ N. Wexe, ¹ A. T. Dellere, ^{5,6} W. A. Colese, ⁷ M. Alie, ^{1,8} M. Burgaye, ⁹ F. Camiloe, ¹⁰ I. Cognarde, ^{11,12} T. Damoure, ¹³ G. Desvignese, ^{14,1} R. D. Ferdman, ¹⁵ P. C. C. Freiree, ¹ S. Grondine, ^{3,16} L. Guillemote, ^{11,12} G. B. Hobbs, ⁴ G. Janssene, ^{17,18} R. Karuppusamye, ¹ D. R. Lorimere, ¹⁹ A. G. Lyne, ² J. W. McKeee, ^{1,20} M. McLaughline, ¹⁹ L. E. Münche, ¹ B. B. P. Pererae, ²¹ N. Pole, ^{19,22} A. Possentie, ^{9,23} J. Sarkissian, ⁴ B. W. Stapperse, ² and G. Theureau ^{11,12,24}		

Orbital period, $P_{\rm b}$ (day)	0.1022515592973(10)
Projected semimajor axis, x (s)	1.415028603(92)
Eccentricity (Kepler equation), e_T	0.087777023(61)
Epoch of periastron, T_0 (MJD)	55700.233017540(13)
Longitude of periastron, ω_0 (deg)	204.753686(47)
Periastron advance, $\dot{\omega} (\text{deg yr}^{-1})$	16.899323(13)
Change of orbital period, \dot{P}_b	$-1.247920(78) \times 10^{-12}$
Einstein delay amplitude, γ_E (ms)	0.384045(94)
Logarithmic Shapiro shape , z_s	9.65(15)
Range of Shapiro delay, $r (T_{\odot})^*$	1.2510(43)
NLO factor for signal prop., $q_{\rm NLO}$	1.15(13)
Relativistic deformation of orbit, δ_{θ}	$13(13) \times 10^{-6}$

Orbit has precessed by >300 deg 2PN contribution at 35_o

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order

PHYSICAL REVIEW X 11, 041050 (2021)		
Featured in Physics		
Strong-Field Gravity Tests with the Double Pulsar		
M. Kramer [•] , ^{1,2,*} I. H. Stairs [•] , ³ R. N. Manchester [•] , ⁴ N. Wex [•] , ¹ A. T. Deller [•] , ^{5,6} W. A. Coles [•] , ⁷ M. Ali [•] , ^{1,8} M. Burgay [•] , ⁹ F. Camilo [•] , ¹⁰ I. Cognard [•] , ^{11,12} T. Damour [•] , ¹³ G. Desvignes [•] , ^{14,1} R. D. Ferdman, ¹⁵ P. C. C. Freire [•] , ¹ S. Grondin [•] , ^{3,16} L. Guillemot [•] , ^{11,12} G. B. Hobbs, ⁴ G. Janssen [•] , ^{17,18} R. Karuppusamy [•] , ¹ D. R. Lorimer [•] , ¹⁹ A. G. Lyne, ² J. W. McKee [•] , ¹²⁰ M. McLaughlin [•] , ¹⁹ L. E. Münch [•] , ¹ B. P. Perera [•] , ²¹ N. Pol [•] , ^{19,22} A. Possenti [•] , ^{9,23} J. Sarkissian, ⁴ B. W. Stappers [•] , ² and G. Theureau ^{11,12,24}		

Orbital period, P _b (day)	0.1022515592973(10)
Projected semimajor axis, x (s)	1.415028603(92)
Eccentricity (Kepler equation), e_T	0.087777023(61)
Epoch of periastron, T_0 (MJD)	55700.233017540(13)
Longitude of periastron, ω_0 (deg)	204.753686(47)
Periastron advance, $\dot{\omega} (\text{deg yr}^{-1})$	16.899323(13)
Change of orbital period, \dot{P}_b	$-1.247920(78) \times 10^{-12}$
Einstein delay amplitude, γ_E (ms)	0.384045(94)
Logarithmic Shapiro shape , z_s	9.65(15)
Range of Shapiro delay, $r(T_{\odot})^*$	1.2510(43)
NLO factor for signal prop., $q_{\rm NLO}$	1.15(13)
Relativistic deformation of orbit, δ_{θ}	$13(13) \times 10^{-6}$

Orbit has precessed by >300 deg 2PN contribution at 35_o

Has consequences on the measurement of the Moment of inertia

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects

Two additional effects:

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects

Two additional effects:

Retardation

PHYSICAL REVIEW X 11, 041050 (2021)

Featured in Physics

Strong-Field Gravity Tests with the Double Pulsar

M. Kramere,^{1,2,*} I. H. Stairse,³ R. N. Manchestere,⁴ N. Wexe,¹ A. T. Dellere,^{5,6} W. A. Colese,⁷ M. Alie,^{1,8}
M. Burgaye,⁹ F. Camiloe,¹⁰ I. Cognarde,^{11,12} T. Damoure,¹³ G. Desvignese,^{14,1} R. D. Ferdman,¹⁵ P. C. C. Freiree,¹
S. Grondine,^{3,16} L. Guillemote,^{11,12} G. B. Hobbs,⁴ G. Janssene,^{17,18} R. Karuppusamye,¹ D. R. Lorimere,¹⁹ A. G. Lyne,²
J. W. McKeee,^{1,20} M. McLaughline,¹⁹ L. E. Münche,¹ B. B. P. Pererae,²¹ N. Pole,^{19,22} A. Possentie,^{9,23} J. Sarkissian,⁴
B. W. Stapperse,² and G. Theureau

- Kramer et al 2021: 1 million ToAs! \bullet
- Precision higher than ever! \bullet
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects

Two additional effects:

Retardation

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects
 - 4. Measuring new PK parameters

Featured in Physics

- Kramer et al 2021: 1 million ToAs!
- Precision higher than ever!
 - 1. GR tested at 99.99%
 - 2. Need to go beyond first order
 - 3. Measure higher-order light-propagation effects
 - 4. Measuring new PK parameters

PHYSICAL REVIEW X 11, 041050 (2021)

Strong-Field Gravity Tests with the Double Pulsar

M. Kramer@,^{1,2,*} I. H. Stairs@,³ R. N. Manchester@,⁴ N. Wex@,¹ A. T. Deller@,^{5,6} W. A. Coles@,⁷ M. Ali@,^{1,8} M. Burgay@,⁹ F. Camilo@,¹⁰ I. Cognard@,^{11,12} T. Damour@,¹³ G. Desvignes@,^{14,1} R. D. Ferdman,¹⁵ P. C. C. Freire@,¹ S. Grondin@,^{3,16} L. Guillemot@,^{11,12} G. B. Hobbs,⁴ G. Janssen@,^{17,18} R. Karuppusamy@,¹ D. R. Lorimer@,¹⁹ A. G. Lyne,² J. W. McKee@,^{1,20} M. McLaughlin@,¹⁹ L. E. Münch@,¹ B. B. P. Perera@,²¹ N. Pol@,^{19,22} A. Possenti@,^{9,23} J. Sarkissian,⁴ B. W. Stappers@,² and G. Theureau^{11,12,24}

Putting it all together

$\begin{array}{llllllllllllllllllllllllllllllllllll$	0009(18) 016(34) 0012(25)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	016(34) 0012(25)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0012(25)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
GW emission $\dot{P}_{\rm b}$ 0.99Orbital deformation δ_{θ} 1.3Spin precession $\Omega_{\rm B}^{\rm spin}$ 0.94	00015(26)
Orbital deformation δ_{θ} 1.3Spin precession $\Omega_{\rm B}^{\rm spin}$ 0.9	99963(63)
Spin precession $\Omega_B^{\text{spin}} = 0.94$	(13)
	4(13)*
Tests of higher order contributions	
Lense-Thirring contrib. to $k = \lambda_{LT} = 0.7$	(9)
NLO signal propagation $q_{\rm NLO}$ [total] 1.1	5(13)
from signal deflection $q_{\rm NLO}$ [deflect.] 1.29	6(24)
from signal retardation $q_{\rm NLO}$ [retard.] 1.3	1 1

- 7 Post-Keplerian parameters (+R)
- Next-to-leading order in signal propagation
- Most precise strong-field test of GR
- Start to probe Mol and Equation-of-State
- Need to take mass loss into account
- MeerKAT improves timing by factor 2-3!

Putting it all together

Relativistic effect	Parameter	Obs./GR pred.
Shapiro delay shape	s	1.00009(18)
Shapiro delay range	r	1.0016(34)
Time dilation	$\gamma_{\rm E}$	1.00012(25)
Periastron advance	$\dot{\omega} \equiv n_{\rm b}k$	1.000015(26)
GW emission	$\dot{P}_{ m b}$	0.999963(63)
Orbital deformation	δ_{θ}	1.3(13)
Spin precession	$\Omega_{\rm B}^{\rm spin}$	$0.94(13)^*$
Tests of higher order contrib	utions	
Lense-Thirring contrib. to k	λ_{LT}	0.7(9)
NLO signal propagation	$q_{\rm NLO}$ [total]	1.15(13)
from signal deflection	q _{NLO} [deflect.]	1.26(24)
from signal retardation	q _{NLO} [retard.]	1.32(24)

- 7 Post-Keplerian parameters (+R)
- Next-to-leading order in signal propagation
- Most precise strong-field test of GR
- Start to probe Mol and Equation-of-State
- Need to take mass loss into account
- MeerKAT improves timing by factor 2-3!

 $\dot{\omega} = \dot{\omega}^{1\mathrm{PN}} + \dot{\omega}^{2\mathrm{PN}} + \dot{\omega}^{\mathrm{LT,A}}$

 $\dot{\omega}^{\text{LT,A}} \simeq -3.77 \times 10^{-4} \times I_{\Lambda}^{(45)} \text{ deg yr}^{-1}$

Moment of inertia

Putting it all together

Relativistic effect	Parameter	Obs./GR pred.
Shapiro delay shape	8	1.00009(18)
Shapiro delay range	r	1.0016(34)
Time dilation	$\gamma_{\rm E}$	1.00012(25)
Periastron advance	$\dot{\omega} \equiv n_{\rm b}k$	1.000015(26)
GW emission	$\dot{P}_{ m b}$	0.999963(63)
Orbital deformation	δ_{θ}	1.3(13)
Spin precession	$\Omega_{\rm B}^{\rm spin}$	$0.94(13)^*$
Tests of higher order contributions		
Lense-Thirring contrib. to k	$\lambda_{\rm LT}$	0.7(9)
NLO signal propagation	$q_{\rm NLO}$ [total]	1.15(13)
from signal deflection	q _{NLO} [deflect.]	1.26(24)
from signal retardation	$q_{\rm NLO}$ [retard.]	1.32(24)

- 7 Post-Keplerian parameters (+R)
- Next-to-leading order in signal propagation
- Most precise strong-field test of GR
- Start to probe Mol and Equation-of-State
- Need to take mass loss into account
- MeerKAT improves timing by factor 2-3!

Moment of inertia

 $\dot{\omega}=\dot{\omega}^{1\mathrm{PN}}+\dot{\omega}^{2\mathrm{PN}}+\dot{\omega}^{\mathrm{LT,A}}$

 $\dot{\omega}^{\text{LT,A}} \simeq -3.77 \times 10^{-4} \times I_{\text{A}}^{(45)} \text{ deg yr}^{-1}$

Thank you for your attention!

GR works very well, while...

Damour-Esposito-Farèse (DEEF)

Relativistic spin precession

Relativistic spin precession

N.b. because of this, B has precessed outside our line of sight. No longer a Double Pulsar!

