Non-Linear Black Hole Ringdowns An Analytical Approach

Based on the work arXiv:2308.15886 in collaboration with T. Barreira, Prof. Kehagias and Prof. Riotto

GraSP, Pisa, 25 Oct 2023 Davide Perrone, University of Geneva

Recent work on Non-Linearity ratio Estimate and independence on initial conditions

J. Redondo-Yuste et al. (2023)

Can we Explain this analytically?

Gravitational Wave signal What we see from a coalescence event

Ringdown, sum of Quasi-Normal Modes And why are Quasi-Normal modes crucial

Proper response to any kind of disturbance

Ringdown ~
$$\sum_{n} QNM_{n}$$

They dominate the Ringdown phase

Quasi-Normal modes Boundary conditions

Ingoing at horizon and outgoing at infinity

Black Hole Horizon Light ring

S

Free Space

Linear Quasi-Normal modes Master Equation, Schwarzschild Black Hole

$$\left(\partial_x^2 + \omega^2 - V(x)\right)\psi(x) = 0$$

$$h_{l,m}(t-r) = \frac{1}{r} \sum_{n} A_{l,m,n} e^{-i\omega_{l,m}}$$

How large are Non-linearities from interactions?

Schrödinger-like Equation

m,n(t-r)

Ringdown, linear

Numerical Nonlinearities For head-on merger into Schwarzschild Black Hole

M. H. Cheung et al. (2022)

$R_{200\times 200} = 1.7 \pm 0.1$

Our target, again For Schwarzschild Black Hole, but not Head-on

J. Redondo-Yuste et al. (2023)

Green's function approach Laplace transform of the master equation

$$\left(\partial_x^2 - s^2 - V(x)\right)\psi_1(x,s)$$
$$\left(\partial_x^2 - s^2 - V(x)\right)\psi_2(x,s)$$

 $\psi_+(x,s)$

Linear and Non-Linear solutions Using analytic structure in s

Green's

Function
$$G(x, x', s) = \frac{\psi_+ \left(\max(x, x'), s\right) \cdot \psi_- \left(\min(x, x'), s\right)}{W(s)}$$
$$\psi_1(x, t) = \int_s \int_{x'} e^{ts} G(x, x', s) \left[j_1(x', s) + y_2(x, t) \right]$$
$$\psi_2(x, t) = \int_s \int_{x'} e^{ts} G(x, x', s) \left[j_2(x', s) + S(x', s) \right]$$
$$\lim_{x \to \infty} \lim_{x \to \infty} w_{l,m,n} \quad \text{Non - Linear, } 2\omega_{l,m,n}$$

Non-linearity ratio estimate The source is localised at the light ring

$$R_{220\times220} = \frac{|\psi_2(x \to \infty, s = 2s_0 = 2\omega_{220})|}{|\psi_1(x \to \infty, s = s_0 = \omega_{220})|^2}$$

$$R_{220\times220} \propto \frac{\left|\frac{A_{220}^2}{W(2s_0)} \cdot \int \psi_{-}(x', 2s_0)\tilde{S} \, dx'\right|}{\left|A_{220} + \frac{A_{220}^2}{s_0 W'(s_0)} \cdot \int \psi_{-}(x', s_0)\tilde{S} \, dx'\right|^2}$$

A. Kehagias, D.P., A. Riotto (2023)

Localisation hypotesis

WKB approach for the estimate Parabolic potential between WBK regions

WKB Region

B. F. Schutz et al. (1985)

Matching between regions To find both solutions and Quasi-Normal mode frequencies

Wronskian estimated in the Parabolic region

Quasi-Normal modes approximate frequencies

 $\omega_{n,l,m}$

Approximate Solution $\psi(x,t)$ for each frequency

 $W(s) = \psi_{-, parabolic}(x, s) \psi'_{+, parabolic}(x, s) - \psi_{+, parabolic}(x, s) \psi'_{-, parabolic}(x, s)$

Estimate source peak and nonlinearities With a real sources this time!

A. Kehagias, D.P., A. Riotto (2023)

 $\psi(x', 2s_0)\tilde{S}(x') \propto$

 $\psi_{-,parabolic}(x', 2s_0) \psi_{-,parabolic}^2(x', s_0) R(x')$ Steepest Descent ~ $R(x_0) \left[\psi_{-,parabolic}(x',2s_0)\psi_{-,parabolic}^2(x',s_0) \right]$

Close estimate with numerical results And independence on initial conditions

A. Kehagias, D.P., A. Riotto (2023)

 $R_{220\times220} \propto \left| \frac{1}{W(2s_0)} \cdot \int \psi_{-}(x', 2s_0) \tilde{S}(x') \, dx' \right|$

 $\left. \frac{R_{220\times220}^{(numerical)}}{Schwarzschild} \simeq 0.06 \right.$

Non-Linearities are important!

Crucial for future of Gravitational Wave analysis

A lot of techniques are being developed to evaluate them

Could hint to deviation from Einstein Gravity

Kerr Black Hole Non-Linearity

Quasicircular mergers

$$\frac{A_{(4,4)}^{(2,2,0)\times(2,2,0)}}{|A_{(2,2,0)}|^2} = 0.1637 \pm 0.001$$
$$\frac{|A_{(2,2,0)}^{(2,2,0)\times(3,3,0)}|}{|A_{(5,5)}|} = 0.4735 \pm 0.006$$

M. H. Cheung et al. (2022)

Kerr Black Hole Non-Linearity And its estimate in Extremal limit

$$\frac{\langle h_{(\ell_1,m_1)}h_{(\ell_2,m_2)}h_{(\ell_1+\ell_2,m_1+m_2)}\rangle}{\langle h_{(\ell_1,m_1)}^2\rangle\langle h_{(\ell_2,m_2)}^2\rangle} = \frac{6\sqrt{2}}{2\pi} - 2C_{\ell_1,\ell_2,\ell_1+\ell_2}^{m_1,m_2,m_1+m_2} \frac{G_{3,3}^{3,3} \left(\begin{array}{c} -im_1, & 0, & im_2\\ 1-im_1, & 1, & 1+im_2 \end{array}\right)}{|\Gamma\left(2-i(m_1+m_2)\right)|^2}$$

$$\frac{\langle h_{(2,2)}h_{(2,2)}h_{(4,4)}\rangle}{\langle h_{(2,2)}^2\rangle^2} \simeq 0.62 \cdot \frac{5}{24}\sqrt{\frac{7}{\pi}} \simeq 0.17 \quad \text{vs} \quad \frac{\left|A_{(4,4)}^{(2,2,0)\times(2,2,0)}\right|}{\left|A_{(2,2,0)}\right|^2} = 0.1637 \pm 0.0018$$
$$\frac{\langle h_{(2,2)}h_{(3,3)}h_{(5,5)}\rangle}{\langle h_{(2,2)}^2\rangle\langle h_{(3,3)}^2\rangle} \simeq 1.57 \cdot \frac{2}{3}\sqrt{\frac{7}{11\pi}} \simeq 0.47 \quad \text{vs} \quad \frac{\left|A_{(2,2,0)\times(3,3,0)}^{(2,2,0)\times(3,3,0)}\right|}{\left|A_{(2,2,0)}\right|\left|A_{(3,3,0)}\right|} = 0.4735 \pm 0.006$$

A. Kehagias, D.P., F. RIva, A. Riotto (2023)

