GraSP23 || GravityShapePisa 2023

THE NEUTRON STAR MATTER EQUATION OF STATE : A CHALLENGE FOR NUCLEAR PHYSICS THEORY

Fiorella Burgio INFN Sezione di Catania

- Motivation
- The NS matter EoS

- Theoretical approaches to the EoS of the core
- Check of the EoS wrt terrestrial laboratory data and NS observations
- One of the major open problems : the onset of strange baryonic matter
- Conclusions a (partial) list of unsolved issues

A theorist's view of a neutron star

A huge nucleus: ~ 10^{57} nucleons

The only "laboratory" for $\rho_B \sim (8 - 10)\rho_0$ in the Universe ! Need EOS of nuclear matter including hyperons and quarks.

- 1. Heavy ion collisions (small N/Z, high T)
- Supernovae and Neutron Stars (high N/Z, high (small) T in SN (NS))
- Binary NS merger and GW emission (high density, high N/Z and T)

Quite different physical conditions in each case ! A nuclear matter theory must be able to treat all these physical situations.

Need an Equation of State $P = P(\varrho, x_i, T)$

Given an EoS, compute the sequence of equilibrium models : The Mass-Radius relation

COMPOSITION

 $\rho = \rho_N + \rho_Y$

N = n, p (939 MeV) Y = Λ^0 (1116 MeV) Σ^{-0+} (1193 MeV) Ξ^{-0} (1318 MeV)

To obtain the equation of state we need

* <u>A theory of strong interaction for</u> <u>nucleons and hyperons</u>

V_{NN}: Argonne, Bonn, Paris, *chiral* potentials V_{NY}: Nijmegen (NSC89,NSC97,ESC08...) V_{YY}: ? (no scattering data)

* <u>A theoretical method to solve the</u> <u>many-body Schrödinger equation</u>

We need to compute the energy density of this system !

✓ Ab-initio microscopic methods: (Dirac)BHF, Variational, SCGF, Monte-Carlo, XEFT

Start from bare two- and three-nucleon interactions able to reproduce nucleon scattering data and properties of bound few-nucleon systems.

Phenomenological: Non-relativistic EDF, Relativistic mean-field (RMF) models

Use effective interactions with a simple structure dependent on a limited number of parameters, which are fitted to different properties of finite nuclei in their g.s.

CAVEAT !

Nuclear interaction unknown at large density —-> extrapolation !

CHECK WRT NUCLEAR PHYSICS CONSTRAINTS

Microscopic EoS (solid lines)

- VI8. BHF with Argonne VI8 supplemented by a microscopic TBF or phenomenological Urbana IX TBF (UIX).
- APR .Variational EoS with Argonne V18 and Urbana IX TBF.
- CBF-EI. Correlated Basis Function- Effective Interaction with simplified Av6' potential and Urbana IX TBF.

Phenomenological EoS (dashed lines)

- SLy4. EoS built with Skyrme forces.
- BSk26. Unified EoS by the Brussels-Montreal group.
- SFHo. Nuclear Statistical Equilibrium (NSE) for an ensemble of nuclei and nucleons with RMF.
- LS220. Mixture of heavy nuclei, α particles, free neutrons and protons. Nuclei described within the LDM, and a Skyrme NN interaction employed for nucleons.
- Shen20. Similar to LS220, but RMF model for nucleons.

- Check wrt to χ EFT : CBF-EI, Shen20 and LS220 not compatible.
- Any reliable EoS model should pass through the region defined by the expt data.
- Most of the EoSs are compatible with expt. data
- Constraints inferred from HICs to be taken with care, since dependent on transport models.

Flow data P. Danielewicz, et al. Science, 298:1592, 2002.
KaoS exp. D. Misťkowiec et al. Phys. Rev. Lett., 72:3650, 1994.
HIC Sn+Sn G Verde et al J. Phys.: Conf. Ser. 312 082044, 2011.
FOPI-LAND J. L. Ritman et al. Z. Phys. A, 352:355, 1995.
ASY-EOS P. Russotto et al. Phys. Rev. C, 94:034608, 2016.
IAS P. Danielewicz et al., Nucl. Phys. A, 922:1, 2014.

G.F. Burgio, H.-J. Schulze, I. Vidaña, and J.-B. Wei, Prog. Part. Nucl. Phys., 120:103879, 2021.

CHECK WRT NUCLEAR PHYSICS & OBSERVATIONAL CONSTRAINTS

 $= \frac{E}{4}(\rho,\beta) = E_0 + \frac{1}{2}K_0x^2 + \frac{1}{6}Q_0x^3 + \left(S_0 + Lx + \frac{1}{2}K_{sym}x^2 + \frac{1}{6}Q_{sym}x^3\right)\beta^2 + O(\beta^4)$

Around saturation density and isospin asymmetry $\beta=0^{-1}$

TABLE 1.1	Saturation properties of the considered models.					
Model	Source/Ref.	$ ho_0$	$-E_0$	K_0	S_0	L
		$[\mathrm{fm}^{-3}]$	[MeV]	[MeV]	[MeV]	[MeV]
V18	[122]	0.178	13.9	207	32.3	67
UIX	[122]	0.171	14.9	171	33.5	61
CBF-EI	[65, 68]	0.160	10.9	240	30.0	68
APR	[123]	0.160	16.0	266	32.6	59
SLy4	[106]	0.160	15.2	232	35.2	50
BSk26	[107]	0.159	15.2	241	30.0	38
\mathbf{SFHo}	[123]	0.157	16.2	244	32.8	53
LS220	[124]	0.155	16.0	220	29.3	74
Shen20	[94]	0.145	16.3	281	31.4	40
Exp.		$\sim 0.14 - 0.17$	~ 1516	220 - 260	28.5 - 34.9	30-87

L correlated with radius and

tidal deformability of a 1.4 M_{\odot} NS.

Data from neutron-skin thickness in Sn isotopes, isospin diffusion in HIC, electric dipole, polarizability, IAS combined with the skin-width data, FRDM, Bayesian analysis of mass and radius measurements in NSs.

Recent PREX-II measurement of the ²⁰⁸Pb neutron skin (Reed) and its more recent analysis (Essick).

Most of the models (full points) fulfill all these constraints.

 $x = (\rho - \rho_0)/3\rho_0$

«Recipe» for Neutron Star Structure Calculation:

Brueckner results: Chemical potentials:

Beta-equilibrium: Charge neutrality:

Composition: Equation of state:

TOV equations:

$$\boldsymbol{\epsilon}(\{\boldsymbol{\rho_i}\}); i = n, p, e, \mu, \Lambda, \Sigma, u, d, s, ...$$

$$\boldsymbol{\mu_i} = \frac{\partial \epsilon}{\partial \rho_i}$$

$$\boldsymbol{\mu_i} = b_i \mu_n - q_i \mu_e$$

$$\sum_i x_i q_i = 0$$

$$\boldsymbol{\mu_{\Sigma^-}} = 2\mu_n - \mu_p$$

$$\boldsymbol{\mu_{\Sigma^-}} = 2\mu_n - \mu_p$$

$$\boldsymbol{\mu_{\Sigma^-}} = \mu_n$$

$$\boldsymbol{\mu_{\Sigma^+}} = \mu_p$$

$$\boldsymbol{x_i}(\rho)$$

$$\boldsymbol{p}(\boldsymbol{\rho}) = \rho^2 \frac{d(\epsilon/\rho)}{d\rho} (\rho, x_i(\rho))$$

$$\frac{dp}{dr} = -\frac{Gm\epsilon}{r^2} \frac{(1 + p/\epsilon)(1 + 4\pi r^3 p/m)}{1 - 2Gm/r}$$

$$\frac{dm}{dr} = 4\pi r^2 \epsilon$$

Structure of the star: $\rho(r)$, M(R) etc.

The simultaneous measurement of both mass and radius of the same NS would provide the most definite observational constraint on the nuclear EoS.

NICER mission : J0740+6620 and J0030+0451. Green and grey — two different data analysis Black bars results from the combination of NICER and GW170817

 $R_{2.08} = 12.35 \pm 0.75 \text{ km}$

 $\begin{aligned} & R_{1.4} = 12.45 \pm 0.65 \text{ km (M. C. Miller et al., Astrophys. J. Lett., 918(2):L28, 2021.)} \\ & R_{1.4} = 11.94^{+0.76}_{-0.87} \text{ km (P. T. H. Pang, et al., Astrophys. J., 922(1):14, 2021.)} \\ & R_{1.4} = 12.33^{+0.76}_{-0.81} \text{ km (G. Raaijmakers et al. Astrophys. J. Lett., 918(2):L29, 2021.)} \end{aligned}$

What do we learn about the EoS ?

UIX is too soft ... problem of TBF at high densities
 NICER+GW170817 might exclude CBF-EI, LS220 and Shen20
 R_{2.08} would admit V18, CBF-EI and Shen20

Future refinements of these radii limits will allow to pin down the EoS very well.

THERMAL EFFECTS ON THE EOS

ONSET OF BARYONIC STRANGE MATTER : THE HYPERON PUZZLE

Courtesy : Hans-Josef Schulze (2019)

THE HYPERON PUZZLE

INFN

THE HYPERON PUZZLE

Maximum mass independent of potentials Maximum mass too low (< $1.4 M_{\odot}$) Proof for "quark" matter inside neutron stars

Hans-Josef Schulze (2019) • • Courtesy

What do we know to include hyperons in the EoS?

Unfortunately, much less than in the pure nucleonic sector to put stringent constraints on the YN & YY interactions

- Very few YN scattering data due to short lifetime of hyperons & low intensity beam fluxes
 - \sim 35 data points, all from the 1960s
 - 10 new data points, from KEK-PS E251 collaboration (2000)
- No YY scattering data exists

(cf. > 4000 NN data for $E_{lab} < 350 \text{ MeV}$)

Courtesy by I. Vidaña

EFFECT OF YY INTERACTION

Problem: No "exact" results from QCD: Large theoretical uncertainties, limited predictive power • Current strategy: Use available eff. quark models (MIT, NJL, CDM, DSM, ...) in combination with the hadronic EOS • An important constraint (from heavy ion collisions): In symmetric matter phase transition not below $\approx 3\rho_0$ E.g., the simplest (MIT) quark model requires a density-dependent bag "constant": $\epsilon_Q = B + \epsilon_{kin} + \alpha_s \times \dots$ $B(\rho) = B_{\infty} + (B_0 - B_{\infty}) \exp\left[-\beta \left(\rho/\rho_0\right)^2\right]$

QUARK MATTER EOS OF DENSE MATTER

Courtesy

A PARTIAL LIST OF OPEN PROBLEMS ...

. . .

- Dependence on the theoretical many-body methods
- Relevance of the nucleonic three-body forces at high density : no complete theory available yet !
- Onset of baryonic strange matter : the hyperon puzzle
- Deconfinement phase transition : at which baryon density ?
- NS Cooling, DURCA processes and nuclear matter superfluidity gaps

After many years the shopping list is still very rich !

