

Gravitational Observables from Scattering Amplitudes

Based on [M. Bianchi, CG, F. Riccioni, JHEP 08 (2023) 188]

Claudio Gambino, October 25, 2023

Istituto Nazionale di Fisica Nucleare

Outline

- Motivation: why gravity from scattering amplitudes?
- Classical physics from loop amplitudes
- State-of-the-art understanding of BH-particle correspondence
- Kerr-Newman metric in Kerr-Schild gauge
- Scalar probe scattering off KN background
- Scattering angle and comparison with the literature
- Conclusions

Motivation

The discovery of GWs started an incredible effort with the aim of describing (extreme) gravitational processes with analytic techniques.

> The PM series is an expansion in G (weak field limit), which is the natural expansion parameter of gravitational scattering amplitudes.

Quasi Normal Modes

We can employ the very wellknown machinery of scattering amplitudes to compute gravitational observables!

Why loop amplitudes can be classical?

[Iwasaki, 1971]

$$L = P - V + 1 \implies V \sim \hbar^{-1}$$
$$\longrightarrow Amplitude$$

However, in the low-energy limit, internal massive lines and massless lines behave differently...

With \hbar 's restored, internal momenta are dimensionally wavelengths

"...we want to point out that there seems to exist an erroneous belief that only tree diagrams contribute to the classical process."

$$\frac{i\hbar}{(p-\hbar q)^2 - m^2 + i\epsilon} \sim \frac{i}{-2 \ p \cdot q + i\epsilon}$$

[Donoghue, gr-qc/9405057] [Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove, 1806.04920]

Loop scattering amplitudes with an internal tree structure are classical.

From this argument follows that every gravitational observables can be computed from graviton scattering amplitudes, organised in a PM expansion in which PM = L + 1.

State of the art

BHs in the weak field regime can be described by minimally-coupled massive spinning particles in the limit $\hbar \rightarrow 0$.

- •Tidal deformations are captured by higher-derivative operators.
- •Generic compact objects are described by non-minimal terms.
- a BH, the limit $S \rightarrow +\infty$ leads to Kerr.

Pick an observable

[Chung, Huang, Kim, Lee, 1812.08752] [Arkani-Hamed, Huang, O'Connell, 1906.10100]

• Spin-S fields reconstruct the 2S multipole moment of a rotating compact object: for

Compute it trough amplitude calculations

Analytically continue it to bound systems

[Kalin, Porto, 1910.03008]

Kerr-Newman metric

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} = \eta_{\mu\nu} + \Phi K_{\mu}K_{\nu}$

 $g^{\mu\nu} = \eta^{\mu\nu} + h^{\mu\nu} = \eta^{\mu\nu} - \Phi K^{\mu}K^{\nu}$

Gauge potential associated to the charged BH:

c in Kerr-Schild gauge

$$K_{\mu} = \left(1, \frac{rx + ay}{r^{2} + a^{2}}, \frac{ry - ax}{r^{2} + a^{2}}, \frac{z}{r}\right)$$

$$K_{\mu}K^{\mu} \equiv K_{\mu}K_{\nu}\eta^{\mu\nu} = 0$$
Most important feature
of KS
$$K_{\mu}K^{\mu} = K_{\mu}K_{\nu}\eta^{\mu\nu} = 0$$

$$A_{\mu} = V_A K_{\mu}$$

$$V_A = Q \frac{r}{r^2 + a^2 \cos^2}$$

 $\Phi =$

Scalar probe scattering off a KN background

Key points:
$$h^{\mu\nu} \sim G \& \sqrt{-g} = 1$$
.

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2} \partial_\mu \phi \,\partial_\nu \phi \,g^{\mu\nu} - \frac{1}{2} m^2 \phi^2 \right) \Rightarrow \mathscr{L}_{int} = \frac{1}{2} h^\mu$$

All the interaction information is contained in a tri-linear vertex.

No higher-order interaction terms! $e^{\mu\nu}(x)T^{\phi}_{\mu\nu}(x)$ $V_{\phi\phi h^n} = 0 \quad n \ge 2$

Exact Fourier transform

Setting up
$$\tilde{h}_{\mu\nu}^{KN}(\vec{q}\,) = \int d^3\vec{x}e^{-i\vec{q}\cdot\vec{x}} \Phi_G(\vec{x}\,)K_\mu(\vec{x}\,)K_\nu(\vec{x}\,) \xrightarrow{\text{cancellation}}$$

It is possible to compute the FT exactly with a variable change

$$K_{\mu}(\vec{x}) \Rightarrow \hat{K}_{\mu}(i\partial_{\vec{q}}) \qquad \vec{u} = \left(q_x \sqrt{r^2 + a^2}, q_y \sqrt{r^2 + a^2}, q_z r\right) \qquad \vec{q} \cdot \vec{x} = \vec{u} \cdot \vec{n} = u\cos(\theta) \qquad |\vec{u}| = u = \sqrt{r^2 q^2 + a^2}$$

 $\tilde{h}_{\mu\nu}^{KN}(\vec{q}) = -8\pi G M \tilde{h}_{\mu\nu}(\vec{q}) + 4\pi G Q^2 \Delta \tilde{h}_{\mu\nu}(\vec{q})$

$$\tilde{h}_{\mu\nu}(\vec{q}) = \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} \hat{K}_{\nu} \ j_0(u) \qquad \Delta \tilde{h}_{\mu\nu}(\vec{q}) = \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \frac{1}{r(u)} \hat{K}_{\mu} \hat{K}_{\nu} \ j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} \ j_0(u) = \frac{1}{|\vec{q}|^2} \hat{K}_{\mu} \ j_0(u) = \frac{1}{|\vec{q}|$$

$d^3x \Phi(\vec{x}) = dr d\Omega \ G(-2Mr + Q^2)$

$i\mathcal{M}(p,p',\vec{q})$

Results:

- p and p' are off-shell momenta.
- When put on-shell:
 - -In \mathcal{M} the J_n 's disappear.
 - In $\Delta \mathcal{M}$ the j_n 's disappear.
- $\Delta \mathcal{M}$ is subleading.

$$\begin{split} i\Delta\mathcal{M}(p,p',\vec{q}\,) &= \left(-i\frac{4\pi GQ^2}{|\vec{q}\,|}\right) \left\{ E^2 \frac{\pi}{2} J_0(|\vec{a}\times\vec{q}\,|) + iE \left(-\frac{\vec{q}\cdot(\vec{p}+\vec{p}')}{|\vec{q}\,|} j_0(|\vec{a}\times\vec{q}\,|) + \frac{\pi}{2} (\vec{a}\times\vec{q}\,|) (|\vec{a}\times\vec{q}\,|) + \frac{\pi}{2} (\vec{a}\times\vec{q}\,|) (|\vec{a}\times\vec{q}\,|) + \frac{\pi}{2} \frac{J_1(|\vec{a}\times\vec{q}\,|)}{|\vec{a}\times\vec{q}\,|} \left(\vec{p}\cdot\vec{p}\,\cdot-\frac{\vec{q}\cdot\vec{p}\,\vec{q}\cdot\vec{p}\,\cdot}{|\vec{q}\,|^2} + \frac{1}{|\vec{q}\,|} \frac{j_1(|\vec{a}\times\vec{q}\,|)}{|\vec{a}\times\vec{q}\,|} \left(\vec{q}\cdot\vec{p}\,(\vec{a}\times\vec{q}\,)\cdot\vec{p}\,\cdot+\vec{q}\cdot\vec{p}\,\cdot\,(\vec{a}\times\vec{q}\,)\cdot\vec{p}\right) \\ &- \frac{\pi}{2} \frac{J_2(|\vec{a}\times\vec{q}\,|)}{|\vec{a}\times\vec{q}\,|^2} (\vec{a}\times\vec{q}\,)\cdot\vec{p}\,(\vec{a}\times\vec{q}\,)\cdot\vec{p}\,\cdot\right\} \end{split}$$

$$= i \frac{8\pi GM}{|\vec{q}|^{2}} \Biggl\{ E^{2} \cos |\vec{a} \times \vec{q}| + iE\Biggl(-\frac{\vec{q} \cdot (\vec{p}' + \vec{p})}{|\vec{q}|} \frac{\pi}{2} J_{0}(|\vec{a} \times \vec{q}|) + j_{0}(|\vec{a} \times \vec{q}|) \Biggl(|\vec{a} \times \vec{q}|) \Biggr(|\vec{a} \times \vec{q}|) \Biggr) \Biggr(|\vec{a} \times \vec{q}|) \Biggr) \Biggr\}$$

$$\mathcal{M}_{KN} = \mathcal{M} + \Delta \mathcal{M}$$

Up to calculations, the **problem is completely** worked out, and we can extrapolate gravitational observables exact in the spin at any PM order!

The eikonal expansion

An example of a systematic approach to derive gravitational observables out from scattering amplitudes is the **eikonal exponentiation**.

Impact Parameter Space:

 $\widetilde{S}(p,\vec{b}) = 1 + i\widetilde{T}(p,\vec{b}) = e^{2i\delta(p,\vec{b})} \Rightarrow i\widetilde{T}(p,\vec{b})$

 $\widetilde{\mathcal{M}}^{(1)}(p,\vec{b}\,) = 2\delta^{(1)}(p,\vec{b}\,)$

Leading order classical contribution

[M. Levy, J. Sucher, 69'] [D. Amati, M. Ciafaloni , G. Veneziano, 87'-90']

$$\widetilde{\mathscr{M}}^{(n)}(p,\vec{b}) = \frac{1}{2|\vec{p}|} \int \frac{d^2q}{(2\pi)^2} e^{i\vec{q}\cdot\vec{b}} \mathscr{M}^{(n)}$$

Eikonal Phase

$$) = i \sum_{n=1}^{+\infty} \widetilde{\mathscr{M}}^{(n)}(p, \vec{b}) = \sum_{m=1}^{+\infty} \frac{1}{m!} \left(2i \sum_{n=1}^{+\infty} \delta^{(n)}(p, \vec{b}) \right)^m$$

$$\widetilde{\mathcal{M}}^{(2)}(p,\vec{b}) = 2\delta^{(2)}(p,\vec{b}) - \frac{i}{2} \left(2i\delta^{(1)}(p,\vec{b}) \right)^2$$

Next-to-leading order classical + hyper-classical

Scattering angle in a generic orientation

From the eikonal phase we can derive many gravitational observables, one of which is the scattering angle.

$$\vartheta(p,\vec{b}) = -\frac{2}{|\vec{p}|} \frac{\partial \delta(p,\vec{b})}{\partial b}$$

We managed to derive the scattering angle of a scalar probe scattering off a Kerr-Newman BH at 1*PM*, exactly in *a*, and for a generic spin orientation.

Leading eikonal phase

$$\delta_{KN}^{(1)} = \frac{1}{4|\vec{p}|} \int \frac{d^2q}{(2\pi)^2} e^{i\vec{q}\cdot\vec{b}} \mathscr{M}_{KN}^{(1)}$$

Equipped with

Restricting to Kerr: $|\vec{a} \times \vec{q}| \rightarrow \pm \vec{q} \cdot \hat{\ell} \times \vec{a}$ We neglect local terms, *i.e.* powers of q^{2n} !

$$\delta^{(1)}(p,\vec{b}) = -\frac{GME^2}{2|\vec{p}|} \sum_{\pm} (1 \pm v)^2 \log \mu |\vec{b} \pm \hat{p} \times \vec{a}|$$

$$\vartheta^{(1)} = \frac{GM}{v^2} \sum_{\pm} \frac{(1 \pm v)^2 (b \mp a \cos \beta)}{a^2 \sin^2 \alpha \sin^2 \beta + (b \mp a \cos \beta)^2}$$

[Y. F. Bautista, A. Guevara, C. Kavanagh, J. Vines, 2107.10179]

$$\begin{cases} \mathscr{F}(d,\nu) = \int \frac{d^d q}{(2\pi)^d} e^{i\vec{q}\cdot\vec{x}} |\vec{q}|^{2\nu} = \frac{2^{2\nu}}{\pi^{d/2}} \frac{\Gamma(\nu+d/2)}{\Gamma(-\nu)} \frac{1}{|\vec{x}|^{2\nu+d}} \\ \mathscr{F}(d,-d/2) = \int \frac{d^d q}{(2\pi)^d} e^{i\vec{q}\cdot\vec{x}} |\vec{q}|^{-d} = -\frac{2^{1-d}}{\pi^{d/2}\Gamma(d/2)} \log \mu |\vec{x}|^{2\nu+d} \end{cases}$$

Deflection angle vs BH angular momentum orientation

13

Gauge potential contribution

$$i\mathcal{M}_{on-shell}^{A}(p,\vec{q}\,) = -i\frac{4\pi QQ_{\phi}}{|\vec{q}\,|^{2}} \left(2E\cos|\vec{a}\times\vec{q}\,| + 2i\sin|\vec{a}\times\vec{q}\,|\frac{\vec{a}\times\vec{q}\cdot\vec{p}}{|\vec{a}\times\vec{q}\,|}\right)$$

$$\delta_A(p,\vec{b}) = \frac{QQ_\phi}{2v} \sum_{\pm} (1 \pm v) \log|\vec{b} \pm \hat{p} \times \vec{a}|$$

In order to be

$$\frac{QQ_{\phi}}{Eb} \sim \frac{GM}{b}$$

$$\vartheta_A(p,\vec{b}\,) = -\frac{QQ_\phi}{v^2 E} \sum_{\pm} \frac{(1\pm v)(b\mp a\cos\beta)}{a^2\sin^2\alpha\sin^2\beta + (b\mp a\cos\beta)}$$

The gauge potential contribution is dominant for reasonable energies.

$$E \sim M_p \quad \text{for} \quad Q_\phi \sim 1$$

2

Why?
$$\Delta \mathcal{M} \sim q^{2n+1}!$$

$$\delta_{KN}^{(1)}(p,\vec{b}\,) = \frac{1}{2} \int \frac{d^3q}{(2\pi)^3} e^{i\vec{q}\cdot\vec{b}} 2\pi\delta(\vec{q}\,\cdot\,\vec{\ell}\,)\mathcal{M}_{on-shell}^{KN}(p,\vec{q}\,) = \frac{1}{2} \int_{-\infty}^{+\infty} d\xi \,\operatorname{FT}\left[\mathcal{M}_{on-shell}^{KN}\right](p,\vec{b}\,+\,\xi\,\vec{\ell}\,)$$

We know exactly the FT

$$\mathsf{FT}\Big[\mathscr{M}_{on-shell}^{KN}\Big] = -h_{\mu\nu}(\vec{x})p^{\mu}p^{\nu} \longrightarrow \left. \left. \delta^{(1)}_{KN}(p,\vec{b}\,) = \frac{1}{2} \int_{-\infty}^{+\infty} d\xi \frac{2GMr^3 - GQ^2r^2}{r^4 + z^2a^2} \left(K_{\mu}p^{\mu}\right)^2 \right|_{\vec{x}=\vec{b}+\xi\vec{\ell}} \right.$$

From $\delta_{KN}^{(1)} = \delta^{(1)} + \Delta \delta^{(1)}$ we can extrapolate $\Delta \delta^{(1)}$ at arbitrary high-order in $O(a^n)$.

In the KN case the integration is more subtle, and a more suitable alternative approach is proposed.

$$\begin{split} \mathcal{M} \sim \mathcal{F}(2,n) \sim \frac{1}{\Gamma(-n)} &= 0\\ \Delta \mathcal{M} \sim \mathcal{F}(2,n+1/2) \sim \frac{1}{\Gamma(-n-1/2)} \neq 0 \end{split}$$

Analytic formulae can be given for special configurations, *e.g.*

$$\Delta \delta^{(1)}(p,\vec{b})$$

We conjecture that through analytic continuation an analytic formula at all orders in the spin can be recovered!

$$= \frac{G\pi Q^2}{4a^2 |\vec{p}|^2} \left(-\frac{(aE+b|\vec{p}|)^2}{\sqrt{b^2 - a^2}} + 2aE|\vec{p}| + |\vec{p}|^2 \right)^2$$

Comparison with the literature

There exist results in literature at arbitrary high order in G, exact in *a*, but **only for equatorial** scattering!

These are obtained by geodesic calculations.

(n,k)	$\left \chi_n^{(k)}/rac{G^n}{v^{2n}(b^2-b^2)} ight $
(1,0)	2(-2av+b)
(1,1)	$\pi/(2a^2)$ (2 a^2
(2,0)	$\left rac{\pi}{2a^2} ight \left[-rac{4}{2a^2} + b^4 v^4 \left(\sqrt{b^2} ight) ight $
(2,1)	$(8a^3 + 24ab^3)$
(2,2)	$igg - (3\pi)/(16a) \ - a^6 \left(b \left(8 \left(\imath \right) \right) \right)$

$$= -\frac{3G\pi Q^2 a^2}{64v^2 b^4} \Big(8 + 5v^2 + (8 + 7v^2)\cos 2\beta + 4(2 + v^2)\cos 2\alpha \sin^2\beta\Big)$$

We obtain the scattering angle at O(G), but exact in the spin of the BH and in a **generic** orientation!

$$\begin{array}{l} \frac{2^{2k}M^{n-k}}{a^2)^{(3n+k-1)/2}} \\ \hline v^2 + b \\ \hline \\ \frac{3v - a^2 \left(-v^2 \sqrt{b^2 - a^2} + 2bv^2 + b \right) + b^2 v^2 \left(b - \sqrt{b^2 - a^2} \right) \right)}{4a^5 v - 4a^3 b^2 v \left(3v^2 + 2 \right) + 2a^2 b^2 v^2 \left(b \left(2v^2 + 3 \right) - v^2 \sqrt{b^2 - a^2} \right) \\ \hline \\ \frac{4a^5 v - 4a^3 b^2 v \left(3v^2 + 2 \right) + 2a^2 b^2 v^2 \left(b \left(2v^2 + 3 \right) - v^2 \sqrt{b^2 - a^2} \right) \\ \hline \\ \hline \\ - a^2 - b \\ + a^4 \left(v^4 \sqrt{b^2 - a^2} + 3b \left(4v^2 + 1 \right) \right) \\ \end{bmatrix} \\ \begin{array}{l} 2^2 (1 + v^2)v + \left(-6a^2 b - 2b^3 \right) (1 + 6v^2 + v^4) \\ \hline \\ 4^3 \left[4a^7 \left(2v^3 + v \right) + 4a^5 b^2 v \left(3v^2 + 4 \right) + 2b^6 v^4 \left(b - \sqrt{b^2 - a^2} \right) + a^2 b^4 v^4 \left(6\sqrt{b^2 - a^2} - 7b \right) \\ \hline \\ e^2 + 3 \right) v^2 + 3 \right) - 2v^4 \sqrt{b^2 - a^2} + 2a^4 b^2 \left(b \left(4v^4 - 3v^2 - 1 \right) - 3v^4 \sqrt{b^2 - a^2} \right) \\ \end{array}$$

[Hoogeveen, 2303.00317]

Conclusions

- We have seen why and how loop scattering amplitudes contain classical physics • We introduced the Kerr-Schild gauge and computed analytically the FT of the Kerr-
- Newman metric
- This result is then used to obtain the scattering angle of a scalar probe scattering off a Kerr-Newman BH

Future directions

- Results for the 2*PM* eikonal phase
- Extend the analysis to probe with spin, in particular the s = 2 case is phenomenologically relevant for the scattering of GWs
- Understand if and how it is possible to generalize such approach to the 2-to-2 scattering of KN BHs

Conclusions

- We have seen why and how loop scattering amplitudes contain classical physics • We introduced the Kerr-Schild gauge and computed analytically the FT of the Kerr-
- Newman metric
- This result is then used to obtain the scattering angle of a scalar probe scattering off a Kerr-Newman BH

Future directions

- Results for the 2*PM* eikonal phase
- Extend the analysis to probe with spin, in particular the s = 2 case is phenomenologically relevant for the scattering of GWs
- Understand if and how it is possible to generalize such approach to the 2-to-2 scattering of KN BHs

Thank you!