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Post-Minkowskian Expansion 
(Scattering Amplitudes) Numerical Relativity Quasi Normal Modes

Motivation
The discovery of GWs started an incredible effort with the aim of describing (extreme) 

gravitational processes with analytic techniques.

Credit: Eur.Phys.J.Plus 132 (2017) 1, 10
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The PM series is an expansion in  (weak 
field limit), which is the natural 

expansion parameter of gravitational 
scattering amplitudes. 

G

We can employ the very well-
known machinery of scattering 

amplitudes to compute 
gravitational observables!



Why loop amplitudes can be classical?
“…we want to point out that there seems to exist an erroneous belief that only 

tree diagrams contribute to the classical process.” 


[Iwasaki, 1971] 

L = P − V + 1 Amplitude ∼ ℏP−V = ℏL−1 →
1
ℏ ( 1 + ℏ + ℏ2 + ⋯)

Classical

LO Quantum 
Correction

However, in the low-energy limit, internal massive lines and massless lines behave differently…

iℏ
(p − ℏ q)2 − m2 + iϵ

∼
i

−2 p ⋅ q + iϵ

P ∼ ℏ
V ∼ ℏ−1

NLO Quantum 
Correction

With ’s restored, internal 
momenta are dimensionally 

wavelengths

ℏ
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ℏ
ℏ−1ℏ

ℏ

ℏ
ℏ

ℏ

ℏ−1 ℏ−1

ℏ−1

ℏ−1

∼
1
ℏ (ℏ)

ℏ−1

ℏ−1 ∼
1
ℏ (1)

Quantum Amplitude Classical Amplitude 

Loop scattering amplitudes with an internal tree structure are classical.

From this argument follows that every gravitational observables can be computed from 
graviton scattering amplitudes, organised in a PM expansion in which .  PM = L + 1
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[Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove, 1806.04920]
[Donoghue, gr-qc/9405057]



State of the art 
[Arkani-Hamed, Huang, O’Connell, 1906.10100]

BHs in the weak field regime can be described by minimally-coupled 
massive spinning particles in the limit .ℏ → 0

[Chung, Huang, Kim, Lee, 1812.08752]
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Pick an observable Compute it trough  
amplitude calculations

Analytically continue  
it to bound systems

[Kalin, Porto, 1910.03008]

•Tidal deformations are captured by higher-derivative operators. 

•Generic compact objects are described by non-minimal terms.

• Spin-  fields reconstruct the  multipole moment of a rotating compact object: for 
a BH, the limit  leads to Kerr.

S 2S
S → + ∞



Kerr-Newman metric in Kerr-Schild gauge

Φ = − G
2Mr − Q2

r2 + a2 cos2 θ

Kμ = (1,
rx + ay
r2 + a2

,
ry − ax
r2 + a2

,
z
r )

x = r2 + a2 sin(θ)cos(φ)

y = r2 + a2 sin(θ)sin(φ)
z = r cos(θ)

gμν = ημν + hμν = ημν + ΦKμKν

Oblate Spheroidal 
Coordinates

KμKμ ≡ KμKνημν = 0gμν = ημν + hμν = ημν − ΦKμKν
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VA = Q
r

r2 + a2 cos2 θAμ = VAKμGauge potential associated to the charged BH:

Most important feature 
of KS



Scalar probe scattering off a KN background

S = ∫ d4x −g ( 1
2

∂μϕ ∂νϕ gμν −
1
2

m2ϕ2) ⇒ ℒint =
1
2

hμν(x)Tϕ
μν(x) No higher-order interaction terms! 

Vϕϕhn = 0 n ≥ 2

All the interaction information is contained in a tri-linear vertex.

Key points:  & .hμν ∼ G −g = 1

iℳKN(p, p′￼, ⃗q) = i h̃μν
KN( ⃗q) pμp′￼ν

We need this FT.

Comb-like diagram made of  
amplitude building blocks.

3pt
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iℳ(L+1) =



⃗q ⋅ ⃗x = ⃗u ⋅ ⃗n = u cos(θ)⃗u = (qx r2 + a2, qy r2 + a2, qzr) | ⃗u | = u = r2q2 + a2q2
⊥Kμ( ⃗x) ⇒ K̂μ(i∂ ⃗q)

h̃KN
μν ( ⃗q) = − 8πGMh̃μν( ⃗q) + 4πGQ2Δh̃μν( ⃗q)

It is possible to compute the FT exactly with a variable change

d3x Φ( ⃗x) = drdΩ G(−2Mr + Q2)

h̃μν( ⃗q) = ∫
+∞

q⊥

udu
| ⃗q |2 K̂μK̂ν j0(u) Δh̃μν( ⃗q) = ∫

+∞

q⊥

udu
| ⃗q |2

1
r(u)

K̂μK̂ν j0(u) Ãμ( ⃗q) = 4πG∫
+∞

q⊥

udu
| ⃗q |2 K̂μ j0(u)

h̃KN
μν ( ⃗q ) = ∫ d3 ⃗xe−i ⃗q⋅ ⃗xΦG( ⃗x )Kμ( ⃗x )Kν( ⃗x )Setting up

Miraculous 
cancellation
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Exact Fourier transform



iℳ(p, p′￼, ⃗q ) = i
8πGM
| ⃗q |2 {E2 cos | ⃗a × ⃗q | + iE( −

⃗q ⋅ ( ⃗p′￼+ ⃗p )
| ⃗q |

π
2

J0( | ⃗a × ⃗q | )

+j0( | ⃗a × ⃗q | )( ⃗a × ⃗q ) ⋅ ( ⃗p′￼+ ⃗p )) + j0( | ⃗a × ⃗q | )( ⃗p ⋅ ⃗p′￼− 2
⃗q ⋅ ⃗p ⃗q ⋅ ⃗p ′￼

| ⃗q |2 )
−

j1( | ⃗a × ⃗q | )
| ⃗a × ⃗q |

( ⃗a × ⃗q ) ⋅ ⃗p ( ⃗a × ⃗q ) ⋅ ⃗p′￼

+
1

| ⃗q |
π
2

J1( | ⃗a × ⃗q | )
| ⃗a × ⃗q | ( ⃗q ⋅ ⃗p ( ⃗a × ⃗q ) ⋅ ⃗p′￼+ ⃗q ⋅ ⃗p′￼ ( ⃗a × ⃗q ) ⋅ ⃗p)}

iΔℳ(p, p′￼, ⃗q ) = (−i
4πGQ2

| ⃗q | ){E2 π
2

J0( | ⃗a × ⃗q | ) + iE( −
⃗q ⋅ ( ⃗p + ⃗p′￼)

| ⃗q |
j0( | ⃗a × ⃗q | )

+
π
2

( ⃗a × ⃗q ) ⋅ ( ⃗p + ⃗p′￼)
J1( | ⃗a × ⃗q | )

| ⃗a × ⃗q | ) +
π
2

J1( | ⃗a × ⃗q | )
| ⃗a × ⃗q | ( ⃗p ⋅ ⃗p′￼−

⃗q ⋅ ⃗p ⃗q ⋅ ⃗p′￼

| ⃗q | 2 )
+

1
| ⃗q |

j1( | ⃗a × ⃗q | )
| ⃗a × ⃗q | ( ⃗q ⋅ ⃗p ( ⃗a × ⃗q ) ⋅ ⃗p′￼+ ⃗q ⋅ ⃗p′￼ ( ⃗a × ⃗q ) ⋅ ⃗p)

−
π
2

J2( | ⃗a × ⃗q | )
| ⃗a × ⃗q |2 ( ⃗a × ⃗q ) ⋅ ⃗p ( ⃗a × ⃗q ) ⋅ ⃗p′￼}

Results: 
•  and  are off-shell momenta. 
•When put on-shell: 

-In  the ’s disappear. 
-In  the ’s disappear. 

•  is subleading.

p p′￼

ℳ Jn
Δℳ jn

Δℳ

Up to calculations, the 
problem is completely 

worked out, and we can 
extrapolate gravitational 
observables exact in the 

spin at any PM order!

ℳKN = ℳ + Δℳ
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The eikonal expansion
An example of a systematic approach to derive gravitational observables out from 

scattering amplitudes is the eikonal exponentiation.

ℳ̃ (n)(p, b⃗ ) =
1

2 | ⃗p | ∫
d2q

(2π)2
ei ⃗q⋅b⃗ℳ(n)

S̃(p, b⃗ ) = 1 + iT̃(p, b⃗ ) = e2iδ(p,b⃗ ) ⇒ iT̃(p, b⃗ ) = i
+∞

∑
n=1

ℳ̃ (n)(p, b⃗ ) =
+∞

∑
m=1

1
m! (2i

+∞

∑
n=1

δ(n)(p, b⃗ ))
m

ℳ̃ (1)(p, b⃗ ) = 2δ(1)(p, b⃗ ) ℳ̃ (2)(p, b⃗ ) = 2δ(2)(p, b⃗ ) −
i
2 (2iδ(1)(p, b⃗ ))

2

[M. Levy, J. Sucher, 69’]
[D. Amati, M. Ciafaloni , G. Veneziano, 87’-90’]

Impact Parameter Space:

Eikonal Phase

Leading order classical contribution Next-to-leading order classical + hyper-classical
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Scattering angle in a generic orientation
From the eikonal phase we can derive many gravitational observables, one of which is 

the scattering angle.

We managed to derive the scattering angle of 
a scalar probe scattering off a Kerr-Newman 

BH at , exactly in , and for a generic 
spin orientation.

1PM a

ϑ(p, b⃗) = −
2

| ⃗p |
∂δ(p, b⃗)

∂b
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Leading eikonal phase
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δ(1)
KN =

1
4 | ⃗p | ∫

d2q
(2π)2

ei ⃗q⋅b⃗ℳ(1)
KN

Equipped with
ℱ(d, ν) = ∫ ddq

(2π)d ei ⃗q⋅ ⃗x | ⃗q | 2ν = 22ν

πd/2

Γ(ν + d/2)
Γ(−ν)

1

| ⃗x | 2ν+d

ℱ(d, − d/2) = ∫ ddq
(2π)d ei ⃗q⋅ ⃗x | ⃗q | −d = − 21−d

πd/2Γ(d/2)
log μ | ⃗x |

Restricting to Kerr: | ⃗a × ⃗q | → ± ⃗q ⋅ ̂ℓ × ⃗a

ϑ(1) =
GM
v2 ∑

±

(1 ± v)2(b ∓ a cos β)
a2 sin2 α sin2 β + (b ∓ a cos β)2

δ(1)(p, b⃗) = −
GME2

2 | ⃗p | ∑
±

(1 ± v)2log μ | b⃗ ± ̂p × ⃗a |

[Y. F. Bautista, A. Guevara, C. Kavanagh, J. Vines, 2107.10179]  

We neglect local terms, i.e. powers of !q2n



Gauge potential contribution

iℳA
on−shell(p, ⃗q ) = − i

4πQQϕ

| ⃗q |2 (2E cos | ⃗a × ⃗q | + 2i sin | ⃗a × ⃗q |
⃗a × ⃗q ⋅ ⃗p

| ⃗a × ⃗q | )

ϑA(p, b⃗ ) = −
QQϕ

v2E ∑
±

(1 ± v)(b ∓ a cos β)
a2 sin2 α sin2 β + (b ∓ a cos β)2

δA(p, b⃗ ) =
QQϕ

2v ∑
±

(1 ± v)log | b⃗ ± ̂p × ⃗a |

The gauge potential contribution is dominant for reasonable energies.

QQϕ

Eb
∼

GM
b

E ∼ MpIn order to be for Qϕ ∼ 1
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In the KN case the integration is more subtle, and a more suitable alternative approach is proposed.

Why? !Δℳ ∼ q2n+1
ℳ ∼ ℱ(2,n) ∼

1
Γ(−n)

= 0

Δℳ ∼ ℱ(2,n + 1/2) ∼
1

Γ(−n − 1/2)
≠ 0

δ(1)
KN(p, b⃗ ) =

1
2 ∫

d3q
(2π)3

ei ⃗q⋅b⃗ 2πδ( ⃗q ⋅ ⃗ℓ )ℳKN
on−shell(p, ⃗q ) =

1
2 ∫

+∞

−∞
dξ FT[ℳKN

on−shell](p, b⃗ + ξ ⃗ℓ )

FT[ℳKN
on−shell] = − hμν( ⃗x)pμpν

We know exactly the FT

δ(1)
KN(p, b⃗ ) =

1
2 ∫

+∞

−∞
dξ

2GMr3 − GQ2r2

r4 + z2a2 (Kμpμ)
2

⃗x=b⃗+ξ ⃗ℓ

From  we can extrapolate  at arbitrary high-order in .δ(1)
KN = δ(1) + Δδ(1) Δδ(1) O(an)
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Analytic formulae can be 
given for special 

configurations, e.g. 
Δδ(1)(p, b⃗ )

⃗a=(0,0,a)
=

GπQ2

4a2 | ⃗p |2 (−
(aE + b | ⃗p | )2

b2 − a2
+ 2aE | ⃗p | + | ⃗p |2 b)

Δδ(1)

1/b
= −

GπQ2E
8vb

(2 + v2)

Δδ(1)

1/b2

= −
GπQ2aE cos β

4b2

Δδ(1)

1/b3

= −
GπQ2a2E

128vb3 (8+5v2 + (8 + 7v2)cos 2β

+4(2 + v2)cos 2α sin2 β)

We conjecture that through analytic continuation an analytic formula at 
all orders in the spin can be recovered!
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Comparison with the literature

[Hoogeveen, 2303.00317]

Δϑ(1)

1/b2

= −
GπQ2

4v2b2
(2 + v2)

Δϑ(1)

1/b3

= −
GπQ2a cos β

vb3

Δϑ(1)

1/b4

= −
3GπQ2a2

64v2b4 (8 + 5v2 + (8 + 7v2)cos 2β

+4(2 + v2)cos 2α sin2 β)
We obtain the scattering angle at , but exact in the spin of the BH and in a generic 

orientation!
O(G)

There exist results in literature at 
arbitrary high order in , exact in 

, but only for equatorial 
scattering!


These are obtained by geodesic 
calculations.

G
a
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Conclusions

18

• We have seen why and how loop scattering amplitudes contain classical physics

• We introduced the Kerr-Schild gauge and computed analytically the FT of the Kerr-

Newman metric

• This result is then used to obtain the scattering angle of a scalar probe scattering off a 

Kerr-Newman BH

Future directions
• Results for the  eikonal phase

• Extend the analysis to probe with spin, in particular the  case is phenomenologically 

relevant for the scattering of GWs

• Understand if and how it is possible to generalize such approach to the 2-to-2 scattering of 

KN BHs

2PM
s = 2
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Thank you!


