Claudio Gambino, October 25, 2023

Istituto Nazionale di Fisica Nucleard

Gravitational Observables from Scattering Amplitudes

Based on [M. Bianchi, CG, F. Riccioni, JHEP 08 (2023) 188]

Outline

- Motivation: why gravity from scattering amplitudes?
- Classical physics from loop amplitudes
- State-of-the-art understanding of BH-particle correspondence
- Kerr-Newman metric in Kerr-Schild gauge
- Scalar probe scattering off KN background
- Scattering angle and comparison with the literature
- Conclusions

Motivation

The discovery of GWs started an incredible effort with the aim of describing (extreme) gravitational processes with analytic techniques.

> The PM series is an expansion in G (weak field limit), which is the natural expansion parameter of gravitational scattering amplitudes.

We can employ the very wellknown machinery of scattering amplitudes to compute gravitational observables!

Why loop amplitudes can be classical?

"…we want to point out that there seems to exist an erroneous belief that only tree diagrams contribute to the classical process."

[Iwasaki, 1971]

With \hbar 's restored, internal momenta are dimensionally wavelengths

$$
L = P - V + 1 \longrightarrow \begin{array}{cc} V \sim \hbar^{-1} \\ P \sim \hbar \end{array} \longrightarrow \text{Amplitude} \sim \hbar^{P-V} = \hbar^{L-1} \rightarrow
$$

However, in the low-energy limit, internal massive lines and massless lines behave differently…

$$
\frac{i\hbar}{(p-\hbar q)^2 - m^2 + i\epsilon} \sim \frac{i}{-2p \cdot q + i\epsilon}
$$

From this argument follows that every gravitational observables can be computed from graviton scattering amplitudes, organised in a PM expansion in which $PM = L + 1$.

[Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove, 1806.04920] [Donoghue, gr-qc/9405057]

State of the art

BHs in the weak field regime can be described by minimally-coupled massive spinning particles in the limit $\hbar \rightarrow 0$.

- Tidal deformations are captured by higher-derivative operators.
- •Generic compact objects are described by non-minimal terms.
- a BH, the limit $S \to +\infty$ leads to Kerr.

[Arkani-Hamed, Huang, O'Connell, 1906.10100] [Chung, Huang, Kim, Lee, 1812.08752]

• Spin-S fields reconstruct the 2S multipole moment of a rotating compact object: for

Pick an observable Compute it trough

amplitude calculations

Analytically continue it to bound systems

[Kalin, Porto, 1910.03008]

Kerr-Newman metric

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} = \eta_{\mu\nu} + \Phi K_\mu K_\nu$

 $R_{\mu\nu} = \eta^{\mu\nu} + h^{\mu\nu} = \eta^{\mu\nu} - \Phi K^{\mu} K^{\nu}$

Fauge potential associated to the charged BH: $A_{\mu} = V_A K_{\mu}$ $V_A = Q_{\frac{r^2 + a^2 \cos^2 \theta}{r^2 + a^2 \cos^2 \theta}}$

c in Kerr-Schild gauge
\n
$$
K_{\mu} = \left(1, \frac{rx + ay}{r^2 + a^2}, \frac{ry - ax}{r^2 + a^2}, \frac{z}{r}\right)
$$
\n
$$
-G\frac{2Mr - Q^2}{r^2 + a^2\cos^2\theta}
$$
\nOblate Spheroidal
\n
$$
K_{\mu}K^{\mu} \equiv K_{\mu}K_{\nu}\eta^{\mu\nu} = 0
$$
\n
$$
\left\{\begin{array}{l}\nx = \sqrt{r^2 + a^2}\sin(\theta)\cos(\varphi) \\
y = \sqrt{r^2 + a^2}\sin(\theta)\sin(\varphi) \\
z = r\cos(\theta)\n\end{array}\right\}
$$

 $A_\mu = V_A K_\mu$

 $\Phi =$

$$
V_A = Q \frac{r}{r^2 + a^2 \cos^2}
$$

Scalar probe scattering off a KN background

$$
S = \int d^4x \sqrt{-g} \left(\frac{1}{2} \partial_\mu \phi \partial_\nu \phi g^{\mu\nu} - \frac{1}{2} m^2 \phi^2 \right) \Rightarrow \mathcal{L}_{int} = \frac{1}{2} h^\mu
$$

All the interaction information is contained in a tri-linear vertex.

Key points:
$$
h^{\mu\nu} \sim G \& \sqrt{-g} = 1.
$$

 $h^{\mu\nu}(x)T^{\phi}_{\mu\nu}$ **No higher-order interaction terms!** $V_{\phi\phi h^n} = 0$ $n \geq 2$

$$
K_{\mu}(\vec{x}) \Rightarrow \hat{K}_{\mu}(i\partial_{\vec{q}}) \qquad \vec{u} = \left(q_x\sqrt{r^2 + a^2}, q_y\sqrt{r^2 + a^2}, q_zr\right) \qquad \vec{q} \cdot \vec{x} = \vec{u} \cdot \vec{n} = u\cos(\theta) \qquad |\vec{u}| = u = \sqrt{r^2q^2 + a^2q_{\perp}^2}
$$

 $\tilde{h}^{KN}_{\mu\nu}(\vec{q}) = -8\pi GM\tilde{h}^{\,}_{\mu\nu}(\vec{q}) + 4\pi GQ^2\Delta\tilde{h}^{\,}_{\mu\nu}(\vec{q})$

It is possible to compute the FT exactly with a variable change

$$
\tilde{h}_{\mu\nu}(\vec{q}) = \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} \hat{K}_{\nu} j_0(u) \qquad \Delta \tilde{h}_{\mu\nu}(\vec{q}) = \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \frac{1}{r(u)} \hat{K}_{\mu} \hat{K}_{\nu} j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac{u du}{|\vec{q}|^2} \hat{K}_{\mu} j_0(u) \qquad \tilde{A}_{\mu}(\vec{q}) = 4\pi G \int_{q_{\perp}}^{+\infty} \frac
$$

Setting up
$$
\tilde{h}_{\mu\nu}^{KN}(\vec{q}) = \int d^3\vec{x} e^{-i\vec{q}\cdot\vec{x}} \Phi_G(\vec{x}) K_{\mu}(\vec{x}) K_{\nu}(\vec{x})
$$

$d^3x \Phi(\vec{x}) = drd\Omega G(-2Mr + Q^2)$

Exact Fourier transform

$$
=i\frac{8\pi GM}{|\vec{q}|^2} \left\{ E^2 \cos |\vec{a} \times \vec{q}| + iE \left(-\frac{\vec{q} \cdot (\vec{p}' + \vec{p})}{|\vec{q}|} \frac{\pi}{2} J_0(|\vec{a} \times \vec{q}|) \right. \\ + j_0(|\vec{a} \times \vec{q}|) (\vec{a} \times \vec{q}) \cdot (\vec{p}' + \vec{p}) \right\} + j_0(|\vec{a} \times \vec{q}|) \left(\vec{p} \cdot \vec{p}' - 2 \frac{\vec{q} \cdot \vec{p} \cdot \vec{q}}{|\vec{q}|^2} \right. \\ - \frac{j_1(|\vec{a} \times \vec{q}|)}{|\vec{a} \times \vec{q}|} (\vec{a} \times \vec{q}) \cdot \vec{p} (\vec{a} \times \vec{q}) \cdot \vec{p}'
$$

$$
+ \frac{1}{|\vec{q}|} \frac{\pi}{2} \frac{J_1(|\vec{a} \times \vec{q}|)}{|\vec{a} \times \vec{q}|} (\vec{q} \cdot \vec{p} (\vec{a} \times \vec{q}) \cdot \vec{p}' + \vec{q} \cdot \vec{p}' (\vec{a} \times \vec{q}) \cdot \vec{p}) \right\}
$$

- \bullet *p* and p' are off-shell momenta.
- **• When put on-shell:**
	- \blacksquare In \mathscr{M} the J_n 's disappear.
	- $-In \Delta M$ the j_n 's disappear.
- **• is subleading.** Δℳ

$$
i\Delta \mathcal{M}(p, p', \vec{q}) = \left(-i\frac{4\pi GQ^2}{|\vec{q}|}\right) \left\{ E^2 \frac{\pi}{2} J_0(|\vec{a} \times \vec{q}|) + iE \left(-\frac{\vec{q} \cdot (\vec{p} + \vec{p}')}{|\vec{q}|} j_0(|\vec{a} \times \vec{q}|) \right) \right. \\
\left. + \frac{\pi}{2} (\vec{a} \times \vec{q}) \cdot (\vec{p} + \vec{p}') \frac{J_1(|\vec{a} \times \vec{q}|)}{|\vec{a} \times \vec{q}|} \right) + \frac{\pi}{2} \frac{J_1(|\vec{a} \times \vec{q}|)}{|\vec{a} \times \vec{q}|} \left(\vec{p} \cdot \vec{p}' - \frac{\vec{q} \cdot \vec{p} \cdot \vec{q} \cdot \vec{p}'}{|\vec{q}|^2}\right) \\
+ \frac{1}{|\vec{q}|} \frac{j_1(|\vec{a} \times \vec{q}|)}{|\vec{a} \times \vec{q}|} \left(\vec{q} \cdot \vec{p} \left(\vec{a} \times \vec{q}\right) \cdot \vec{p}' + \vec{q} \cdot \vec{p}' \left(\vec{a} \times \vec{q}\right) \cdot \vec{p}\right) \\
- \frac{\pi}{2} \frac{J_2(|\vec{a} \times \vec{q}|)}{|\vec{a} \times \vec{q}|^2} (\vec{a} \times \vec{q}) \cdot \vec{p} \left(\vec{a} \times \vec{q}\right) \cdot \vec{p}' \right\}
$$

 $i\mathscr{M}(p,p',\vec{q}\,)=i$

Results:

Up to calculations, the problem is completely worked out, and we can observables exact in the spin at any PM order!

$$
\mathcal{M}_{KN} = \mathcal{M} + \Delta \mathcal{M}
$$

The eikonal expansion

An example of a systematic approach to derive gravitational observables out from scattering amplitudes is the **eikonal exponentiation**.

$$
\overline{\mathcal{M}}^{(n)}(p,\vec{b}) = \frac{1}{2|\vec{p}|} \int \frac{d^2q}{(2\pi)^2} e^{i\vec{q}\cdot\vec{b}} \mathcal{M}^{(n)}
$$

S $\widetilde S$ $(p, b) = 1 + iT$ \widetilde{T} $\widetilde{f}(p,\vec{b}\,) = e^{2i\delta(p,\vec{b}\,)} \Rightarrow i\widetilde{T}$ (*p*, *b*

 $\widetilde{\mathscr{M}}$ $\overline{\mathscr{M}}^{(1)}(p,\vec{b}) = 2\delta^{(1)}(p,\vec{b})$

$$
=i\sum_{n=1}^{+\infty}\widetilde{\mathcal{M}}^{(n)}(p,\vec{b})=\sum_{m=1}^{+\infty}\frac{1}{m!}\left(2i\sum_{n=1}^{+\infty}\delta^{(n)}(p,\vec{b})\right)^{m}
$$

$$
\widetilde{\mathcal{M}}^{(2)}(p,\vec{b}) = 2\delta^{(2)}(p,\vec{b}) - \frac{i}{2} \left(2i\delta^{(1)}(p,\vec{b}) \right)^2
$$

Leading order classical contribution Next-to-leading order classical + hyper-classical

[M. Levy, J. Sucher, 69'] [D. Amati, M. Ciafaloni , G. Veneziano, 87'-90']

Impact Parameter Space:

Eikonal Phase

Scattering angle in a generic orientation

From the eikonal phase we can derive many gravitational observables, one of which is the scattering angle.

We managed to derive the scattering angle of a scalar probe scattering off a Kerr-Newman BH at 1PM, exactly in a, and for a generic spin orientation.

$$
\vartheta(p,\vec{b}) = -\frac{2}{|\vec{p}|} \frac{\partial \delta(p,\vec{b})}{\partial b}
$$

Leading eikonal phase

 $\sqrt{ }$

$$
\delta_{KN}^{(1)} = \frac{1}{4|\vec{p}|} \int \frac{d^2q}{(2\pi)^2} e^{i\vec{q}\cdot\vec{b}} \mathcal{M}_{KN}^{(1)}
$$

Equipped with

Restricting to Kerr: $|\vec{a} \times \vec{q}| \rightarrow \pm \vec{q} \cdot \hat{\ell} \times \vec{a}$ We neglect local terms, *i.e.* powers of q^{2n} !

$$
\mathcal{F}(d,\nu) = \int \frac{d^d q}{(2\pi)^d} e^{i\vec{q}\cdot\vec{x}} |\vec{q}|^{2\nu} = \frac{2^{2\nu}}{\pi^{d/2}} \frac{\Gamma(\nu + d/2)}{\Gamma(-\nu)} \frac{1}{|\vec{x}|^{2\nu+d}}
$$

$$
\mathcal{F}(d, -d/2) = \int \frac{d^d q}{(2\pi)^d} e^{i\vec{q}\cdot\vec{x}} |\vec{q}|^{-d} = -\frac{2^{1-d}}{\pi^{d/2}\Gamma(d/2)} \log \mu |\vec{x}|
$$

Deflection angle vs BH angular momentum orientation

$$
\theta^{(1)} = \frac{GM}{v^2} \sum_{\pm} \frac{(1 \pm v)^2 (b \mp a \cos \beta)}{a^2 \sin^2 \alpha \sin^2 \beta + (b \mp a \cos \beta)^2}
$$

$$
\delta^{(1)}(p,\vec{b}) = -\frac{GME^2}{2|\vec{p}|} \sum_{\pm} (1 \pm v)^2 \log \mu |\vec{b} \pm \hat{p} \times \vec{a}|
$$

[Y. F. Bautista, A. Guevara, C. Kavanagh, J. Vines, 2107.10179]

Gauge potential contribution

$$
i\mathcal{M}^{A}_{on-shell}(p,\vec{q}) = -i\frac{4\pi QQ_{\phi}}{|\vec{q}|^{2}} \left(2E\cos|\vec{a}\times\vec{q}| + 2i\sin|\vec{a}\times\vec{q}| \frac{\vec{a}\times\vec{q}\cdot\vec{p}}{|\vec{a}\times\vec{q}|} \right)
$$

$$
\delta_A(p, \vec{b}) = \frac{QQ_\phi}{2v} \sum_{\pm} (1 \pm v) \log |\vec{b} \pm \hat{p} \times \vec{a}|
$$
\n
$$
\vartheta_A(p, \vec{b}) = -\frac{QQ_\phi}{v^2 E} \sum_{\pm} \frac{(1 \pm v)(b \mp a \cos \beta)}{a^2 \sin^2 \alpha \sin^2 \beta + (b \mp a \cos \beta)^2}
$$

$$
\delta_A(p, \vec{b}) = \frac{QQ_\phi}{2v} \sum_{\pm} (1 \pm v) \log |\vec{b} \pm \hat{p} \times \vec{a}|
$$

The gauge potential contribution is dominant for reasonable energies.

$$
\frac{QQ_{\phi}}{Eb} \sim \frac{GM}{b}
$$

In order to be
$$
\frac{\epsilon \epsilon \phi}{\Gamma l} \sim \frac{U/m}{l}
$$
 $E \sim M_p$ for $Q_\phi \sim 1$

In the KN case the integration is more subtle, and a more suitable alternative approach is proposed.

Why?
$$
\triangle M \sim q^{2n+1}
$$

$$
\mathcal{M} \sim \mathcal{F}(2,n) \sim \frac{1}{\Gamma(-n)} = 0
$$

$$
\Delta \mathcal{M} \sim \mathcal{F}(2,n+1/2) \sim \frac{1}{\Gamma(-n-1/2)} \neq 0
$$

$$
\delta_{KN}^{(1)}(p,\vec{b}) = \frac{1}{2} \int \frac{d^3q}{(2\pi)^3} e^{i\vec{q}\cdot\vec{b}} 2\pi \delta(\vec{q}\cdot\vec{\ell'}) \mathcal{M}_{on-shell}^{KN}(p,\vec{q}) = \frac{1}{2} \int_{-\infty}^{+\infty} d\xi \mathsf{FT} \Big[\mathcal{M}_{on-shell}^{KN} \Big](p,\vec{b}+\xi\vec{\ell'})
$$

We know exactly the FT

$$
\mathsf{FT}\left[\mathcal{M}_{on-shell}^{KN}\right] = -h_{\mu\nu}(\vec{x})p^{\mu}p^{\nu} \longrightarrow \left[\begin{array}{c} \delta_{KN}^{(1)}(p,\vec{b}) = \frac{1}{2} \int_{-\infty}^{+\infty} d\xi \frac{2GMr^3 - GQ^2r^2}{r^4 + z^2a^2} \left(K_{\mu}p^{\mu}\right)^2 \right]_{\vec{x} = \vec{b} + \xi\vec{\ell}} \end{array}\right]
$$

From $\delta_{KN}^{(1)} = \delta^{(1)} + \Delta \delta^{(1)}$ we can extrapolate $\Delta \delta^{(1)}$ at arbitrary high-order in $O(a^n)$. *KN* $\delta^{(1)} + \Delta \delta^{(1)}$ we can extrapolate $\Delta \delta^{(1)}$ at arbitrary high-order in $O(a^n)$

Analytic formulae can be given for special configurations, *e.g.*

$$
\Delta \delta^{(1)}(p, \vec{b}) \Big|_{\vec{a} = (0,0,a)} = \frac{G\pi Q^2}{4a^2 |\vec{p}|^2} \left(-\frac{(aE + b|\vec{p}|)^2}{\sqrt{b^2 - a^2}} + 2aE |\vec{p}| + |\vec{p}|^2 \right)
$$

We conjecture that through analytic continuation an analytic formula at all orders in the spin can be recovered!

Comparison with the literature

[Hoogeveen, 2303.00317]

We obtain the scattering angle at $O(G)$, but exact in the spin of the BH and in a **generic orientation**!

$$
\frac{2^{2k}M^{n-k}}{a^2)^{(3n+k-1)/2}}\\v^2 + b\big)\\v^2 + b\big)\\
$$
\n
$$
v^2 + b\big)\\
$$
\n
$$
4a^5v - 4a^3b^2v(3v^2 + 2) + 2a^2b^2v^2(b - \sqrt{b^2 - a^2})\\-a^2 - b\big) + a^4(v^4\sqrt{b^2 - a^2} + 3b(4v^2 + 1))\\
$$
\n
$$
a^2\big)\\(1 + v^2)v + (-6a^2b - 2b^3)(1 + 6v^2 + v^4)
$$
\n
$$
b^4\big[4a^7(2v^3 + v) + 4a^5b^2v(3v^2 + 4) + 2b^6v^4(b - \sqrt{b^2 - a^2}) + a^2b^4v^4(6\sqrt{b^2 - a^2} - 7b)
$$
\n
$$
b^2 + 3\big)v^2 + 3\big) - 2v^4\sqrt{b^2 - a^2} + 2a^4b^2(b(4v^4 - 3v^2 - 1) - 3v^4\sqrt{b^2 - a^2})\big]
$$

$$
= -\frac{3G\pi Q^2 a^2}{64v^2b^4} \left(8 + 5v^2 + (8 + 7v^2)\cos 2\beta + 4(2 + v^2)\cos 2\alpha \sin^2 \beta\right)
$$

There exist results in literature at arbitrary high order in G, exact in , but **only for equatorial** *a* **scattering**!

These are obtained by geodesic calculations.

Conclusions

- We have seen why and how loop scattering amplitudes contain classical physics • We introduced the Kerr-Schild gauge and computed analytically the FT of the Kerr-
- Newman metric
- This result is then used to obtain the scattering angle of a scalar probe scattering off a Kerr-Newman BH

- Results for the 2PM eikonal phase
- Extend the analysis to probe with spin, in particular the $s = 2$ case is phenomenologically relevant for the scattering of GWs
- Understand if and how it is possible to generalize such approach to the 2-to-2 scattering of KN BHs

Future directions

Conclusions

- We have seen why and how loop scattering amplitudes contain classical physics • We introduced the Kerr-Schild gauge and computed analytically the FT of the Kerr-
- Newman metric
- This result is then used to obtain the scattering angle of a scalar probe scattering off a Kerr-Newman BH

- Results for the 2PM eikonal phase
- Extend the analysis to probe with spin, in particular the $s = 2$ case is phenomenologically relevant for the scattering of GWs
- Understand if and how it is possible to generalize such approach to the 2-to-2 scattering of KN BHs

Future directions

Thank you!