Searching for continuous gravitational waves: the remainder of the zoo

Cristiano Palomba – INFN Roma

Istituto Nazionale di Fisica Nucleare

Pisa, October 24-27 2023

GraSP23 || GravityShapePisa 2023

``Standard'' sources

Spinning neutron stars, isolated or in a binary system
 Talks by Paola Leaci (Tuesday) and Pia Astone (Thursday)
 Poster by Lorenzo Mirasola

This talk is about ``less standard" sources
Long-transient signals (e.g. newborn magnetars)
Imprints of ultra-light DM
Sub-solar mass PBH inspirals

- Emission mechanism
- Data analysis aspects
- Results and perspectives

Gravitational Waves in a nutshell

 Gravitational Waves (GWs) are solutions of the linearised Einstein field equations in vacuum:

$$h_{ij}^{TT} = \frac{2G}{3c^4 r} \ddot{Q}_{ij}^{TT}, \quad Q_{ij}^{TT} = \int \rho \left(x^i x^j - \frac{1}{3} \delta^{ij} r^2 \right) d^3 x$$
$$L_{GW} = -\frac{dE_{GW}}{dt} = \frac{G}{5c^5} \left\langle \left(\frac{\partial^3 Q_{ij}^{TT}}{\partial t^3} \right)^2 \right\rangle$$

• Produced by the bulk motion of matter. Examples:

Coalescing compact binaries (black holes, neutron stars)

Supernova explosions

Transient signals (duration O(0.001-100) s)

Continuous Waves/Long-transients

Persistent or long-transient signals O(hours-days)

Basic features of CWs

Narrow-band, nearly periodic signals, with duration such the effect of detector motion is not negligible

More complicated if the source is in a binary system (depends on up to 5 Keplerian parameters)

Amplitude (and phase) modulation

Intrinsic source secular variation of the rotational frequency: spin-down (-up)

Very specific features that help in discriminating a real signal from noise

Expected amplitude much lower than for CBC signals

- We can exploit signal long duration to build-up SNR
- Need to develop DA pipelines to deeply dig into the detector noise. Computational efficiency is often a major issue.
- Once detected, a CW is forever! (not true in the case of long transient signals)

Long-transient signals

Nearly periodic signals, with duration of hours – days

Typically, |spin-down/up| >> w.r.t. standard CWs (say, >> 10⁻⁸ Hz/s)

Reference source: rapidly spinning newborn magnetar

Dynamo in fast spinning PNS: driven by differential rotation (→ toroidal magnetic field) + plasma or magneto-rotational instability
 [e.g. Dall'Osso, Stella 2103.10878 for a review]

- Millisecond magnetars can form in a significant fraction of both core collapse supernovae and in NS mergers (10-40%)
- Magnetars (+ accretion disk) can also power a fraction of observed GRBs, both short and long

Magnetar model fit to observed GRB light curves [Dall'Osso, Stratta et al., ApJL 949 L32 (2023)] A newborn magnetar can be a strong GW emitter

- The strong inner magnetic field distorts the star shape
- Combination of GW and EM spin-down

Development of proper search methods is a very active field

Strong need to improve the sensitivity!

Distance reach of pipelines applied to the search of a post-merger signal from GW170817

The example of the "Generalized Frequency-Hough" transform

A) Time-frequency "peak-maps" (built from "short" FFTs)
B) Variable transformation to make the signal "straight"
C) Apply classical Frequency-Hough transform to find significant peaks in a 2D histogram

10

• Sensitivity of the method limited by the short data segment duration ($\propto T_{FFT}^{0.25}$)

• Computing cost is a steep function of the segment duration ($\propto T_{FFT}^4$)

Several efforts carried in parallel to improve search sensitivity.

O Image processing: "triangular filter" in 2D-Fourier domain [L. Pierini arxiv 2209.07276]

Simulated signal in the 2D FT space space

Simulated signal in the time-frequency space

800

750

700

k [pixels] 920

600

550

500

200

400

Sapienza University of Rome (2022) Signal power confined in a limited region

Build a filter to keep the signal and rid-off the noise

11

- ML techniques [e.g. A. Miller, P. Astone,...CP et al, PRD100, 062005 (2019); L. Modaffari et al., PRD108, 023005 (2023)]
 - To speed-up analysis (still not clear if they provide better sensitivity)
 - To reduce impact of noise (and then improve detection efficiency): denoisers

Raw and denoised spectrogram (O3 H data + simulated signal) F. Attadio's Master Thesis – Sapienza University of Rome

12

- Multi-messenger approach to reduce the search parameter space
 - E.g. shock breakouts from core collapse SN
 - Early UV emission can pinpoint to the presence of a magnetar central engine
 - Light curve depends on magnetar parameters

S. Menon, D. Guetta, S. Dall'Osso, ApJ 955, 6 (2023): Maximum redshift for detection by planned ULTRASAT satellite (arxiv 2304.14482)

All these efforts aim at reaching an horizon of at least 4-8 Mpc by LVK run O5

Gravitational Wave signatures of DM

DM candidates cover ~90 orders of magnitude in mass

GW detectors offer an ``opportunity window" for free

 In recent years, a growing body of literature on the potentiality of Gravitational Wave (GW) detectors as tools to probe DM has been produced (see e.g. Bertone+, arxiv:1907.10610)

CW emission from boson clouds around Kerr BHs

(10⁻¹⁴ – 10⁻¹¹ eV)

Picture credit: Ana Sousa Carvalho Sub-solar mass BH inspirals (M<0.01M_{sun})

Sub-solar mass BH binaries

Formation mechanisms (very qualitative!)

Inhomogeneities from the Big-Bang

Cloud of dissipative dark matter particles

micro-seconds after the Big-Bang

Primordial black holes

Current constraints on PBH abundance (with caveats!)

For masses < 0.01 M_{sun} and just considering the early inspiral, PNO waveforms are sufficiently accurate

Moreover, limiting the search at the early inspiral significantly reduces the computing cost in front of a small sensitivity loss

-0.2

-0.4

-0.6

-0.8 -1 -1.2

-1.4

-1.6

-1.8

80

Signal duration (for f_{max} =120 Hz), with T_{obs} =1 yr

-3

-3.2

-4.4

-4.6

20

30

40

50

frequency [Hz]

E. Velcani's Master Thesis – Sapienza University of Rome (2022)

10²

120 Hz

17

Frequency [Hz]

Long-transient/CW signal, depending on parameters

60

70

Methods for the search of long-transient signals from newborn NSs can be adapted to light PBH inspirals

* E.g. GFH algorithm [A. Miller, S. Clesse et al., 2012.12983]

GFH histogram

800

600

400

200

number count

Sensitivity limited by short allowed FFT length

- Methods to boost the sensitivity are being explored:
 - "smart" construction of the parameter space grid [Rome, IFAE Barcelona groups]
 - resampling [joint Rome/ANU project]

Simulated PBH inspiral in O3 L data

o define a new time variable in which the signal is nearly monochromatic

→ Poster by Neil Lu on display on Thursday

Ultra-light boson clouds

Massive bosonic fields around a Kerr BH induce a superradiance instability, in which the field is amplified, at the expense of the BH rotational energy

Once formed, the cloud dissipates through the emission of CWs (emission time scale >> instability time scale)

[Arvanitaki et al., PRD81, 123530 (2010); Yoshino & Kodama, Prog. Rep. Theor. Phys. 043E02 (2014); Arvanitaki et al., PRD91, 084011 (2015); Brito et al., PRD96, 064050 (2017); East, PRL121, 131104 (2018); Baryakhtar et al., PRD103, 095019 (2021);

For vector bosons, stronger signals and shorter duration

Various DA methods have been developed and applied to search for CW-like signals from boson clouds (both for all-sky and directed searches)

 $\alpha = \frac{GM_{\rm BH}}{c^3} \frac{m_b}{\hbar}$

Result examples (scalar clouds)

Exclusion regions from all-sky O3 analysis (D=1kpc, χ_i =0.5)

All-sky searches (scalar bosons)

[D'Antonio, CP et al., PRD98, 103017 (2018); CP, DAntonio, Astone et al., PRL123, 171101 (2019); LVK, PRD105, 102001 (2022)]

Directed, post-merger BHs (vector bosons) [Jones, Sun et al., PRD108, 064001 (2023)]

Directed searches (scalar bosons)

[Sun et al., PRD101, 063020 (2020);

Zhu, Baryakhtar et al., PRD102, 063020 (2020); LVK, PRD106, 042003 (2022);

D'Antonio, CP, Astone et al., accepted in PRD (2023)]

- \circ 10⁷ 10⁸ BHs are expected to exist in the Milky Way
- Signal superposition in all-sky searches, if most
 BHs are sorrounded by a boson cloud

- Robustness of current search method has been demonstrated in [Pierini, Astone, CP et al. PRD106, 042009 (2022)]
- Possible sensitivity improvement by tuning FFT duration in semi-coherent searches [R. Felicetti, Master Thesis, Sapienza University of Rome 2022]

DM direct interactions

 Ultra-light DM can directly interact with interferometer optical components producing a potentially detectable signal

•It is not a GW signal, but nevertheless the interaction can cause a differential strain

•The mass scale to which detectors are sensitive is set by the particle field frequency: $f_0 = \frac{m_A c^2}{h} \rightarrow 10^{-14} - 10^{-11} eV$ for Earth-bound detectors

 Dark Photon (DP) was originally introduced as an hypothetical vector boson that couples to SM charged particles through kinetic mixing [Holdom 1986]

Pierce et al. 2018, Phys. Rev. Lett. 121, 061102 Guo et al. 2019 Nature Communications Physics 2 Nagano et al. 2019, PRL 123, 111301 Morisaki et al. 2021, PRD 103, L051702 Michimura et al. 2021, PRD 102, 102001 Vermeulen et al. 2021, arXiv:2103.03783 DP coupling to the protons/neutrons of the detector mirrors induces a differential strain with two components:

Differential strain due to the spatial gradient of the DP field

$$\begin{split} \sqrt{\langle h_D^2 \rangle} &= C \frac{q}{M} \frac{\hbar e}{c^4 \sqrt{\epsilon_0}} \sqrt{2\rho_{\rm DM}} v_0 \frac{\epsilon}{f_0}, \\ &\simeq 6.56 \times 10^{-27} \left(\frac{\epsilon}{10^{-23}}\right) \left(\frac{100 \text{ Hz}}{f_0}\right) \end{split}$$

Pierce+ 2018

Equivalent differential strain due to finite speed of light in detector arms

$$\begin{split} \sqrt{\langle h_C^2\rangle} &= \frac{\sqrt{3}}{2} \sqrt{\langle h_D^2\rangle} \frac{2\pi f_0 L}{v_0}, \\ &\simeq 6.58 \times 10^{-26} \left(\frac{\epsilon}{10^{-23}} \right. \end{split}$$
 Morisaki+ 2021

Stochastic and narrow-band signal

$$\Delta f = \frac{1}{2} \left(\frac{v_0}{c} \right)^2 f_0 \approx 2.94 \times 10^{-7} f_0$$

Frequency spread due to the Maxwell-Boltzman velocity distribution of DPs

[Miller,...CP et al., PRD 103, 103002 (2021)]

It can be searched into the detector data with techniques adapted from those used in the search of "traditional" CW and/or stochastic signals

 Improvement of two orders of magnitude w.r.t. direct search experiments, assuming $U(1)_{B}$

740,440

740.445

740.450

See also very interesting results on scalar DM coupled to GEO600 beamsplitter [Vermeulen+, Nature 2021]

Conclusions

Search methods developed for ``standard" CW signals (from spinning NSs) can be used/adapted to search for ``less standard" sources

GW detectors can be also used as ``particle detectors", basically for free

A detection from exotic CW sources could well be possible right NOW

In the worst case, we are paving the way for enhanced DA methods to be used with 3rd generation detectors, like Einstein Telescope and Cosmic Explorer

BACKUP SLIDES

The fate of NSNS coalescence

Multiple signals can be resolved!

Credit: L. Pierini

t - t_o [days]

[Pierini et al. (2022) PRD 106(4), 042009]

Future observations

lide 13

[Brito et al. (2017) PRL 119, 131101]

Indirect search looking at gaps in the BH mass-spin plane (Brito+ 2018, see also Ng+ 2021)

Impact of boson clouds on binary dynamics (and viceversa)

Credit: O. Hannuksela

Yang+ 2018 Hannuksela+ 2018 Baumann+ 2019 Choudhary+ 2021 De Luca, Pani 2021

....

• Dark Photon (DP) was originally introduced as an hypothetical vector boson that couples to SM charged particles through kinetic mixing [Holdom 1986]

Associated to a new U(1) gauge field

$$\mathscr{L} = -\frac{1}{4}A_{\mu\nu}^{'}A^{'\mu\nu} + \frac{1}{2}m_{\rm A}^{2}A^{'\mu}A_{\mu}^{'} - \epsilon_{\rm A}eJ_{\rm EM}^{\mu}A_{\mu}^{'}$$

It couples to baryon or neutron number

 $A'_{\mu\nu}$: DP field strength tensor

 A'_{μ} : DP field m_{A} : DP mass ϵ_{A} : DP coupling strength

• DP is a DM candidate, with relics abundance produced by e.g. the misalignment mechanism [Nelson & Scholz, PRD 84, 103501 (2011)]

The DP field can be described as a superposition of plane waves

$$\vec{A}(\vec{x}) = \sum_{i} A_i \cos(2\pi f_i t - \vec{k}_i \cdot \vec{x} + \phi_i)$$

 $\Delta f = \frac{1}{2} \left(\frac{v_0}{c}\right)^2 f_0 \approx 2.94 \times 10^{-7} f_0$ Frequency spread due to the Maxwell-Boltzman velocity distribution of DPs

The peculiarity of KAGRA

• End and Input mirrors are made by **sapphire**.

- Beam-splitter and recycling mirrors are made by **fused-silica**.
- The force on the optics is composition-dependent!
- The effect can be observed by the auxiliary channels, which monitor the intra-optics distances.
- Will provide meaningful results in the next observing runs.

[Michimura *et al*. (2020) **PRD 102**, 102001]

Scalar DM coupling to GW detector beam-splitter → change in size and refraction index Vermeulen et al, Nature 600, 424 (2021)

GEO600 best suited thanks to its sensitivity to optical phase differences (squeezing)

