

Plans and developments for Cherenkov PID upgrade for ALICE 3

ALICE, EIC, LHCb Meeting April 25th, 2023

Antonello Di Mauro (CERN) on behalf of the ALICE 3 RICH WG

Outline

- Introduction to ALICE 3 and PID requirements
- RICH layout and performance studies in Geant4
- R&D topics
- Plans

ALICE 3: phase IIb upgrade for LHC Run 5 & 6

e ⁺ e -

Key physics questions and drivers

- **precision measurements of dileptons**
	- **evolution of the quark gluon plasma**
	- ➟ mechanisms of chiral symmetry restoration in the quark-gluon plasma
- **systematic measurements of (multi-)heavy-flavoured hadrons**
	- **transport properties** in the quark-gluon plasma
	- **mechanisms of hadronisation** from the quark-gluon plasma

• **hadron correlations**

- **interaction potentials**
- ➟ fluctuations

• …

➠ **Heavy-ion collisions at the LHC are ideal to address these questions, but require improved detector performance and statistics.**

[CERN-LHCC-2022-009](https://cds.cern.ch/record/2803563?ln=en)

The ALICE3 detector

- High-efficiency for heavy-quark identification and reconstruction of low-mass dielectrons
- Compact all-silicon tracker with unprecedently low material budget, with retractable vertex detector (tracking precision x 3: $10 \mu m$ at $p_T = 200$ MeV)
- Large acceptance with excellent coverage down to low p_T (acceptance x 4.5: $|\eta|$ < 4)
- **Extensive particle ID**
- Superconducting magnet system
- Continuous readout and online processing (A-A rate x 5, pp x 25)

innovative technologies relevant for future HEP experiments

ALICE Phase IIb Upgrade Timeline

- 2023 2025: selection of technologies, small-scale proof of concept prototypes (~25% of R&D funds)
- \therefore 2026 2027: large-scale engineered prototypes (~75% of R&D funds) → Technical **Design Reports**
- \sim 2028 2030: construction and testing
- $2031 2032$: contingency
- 2033 2034: installation and commissioning
- $2035 2042$: physics campaign

ALICE 3 charged PID system

• $R = 0.19$ (0.85) m

Forward TOF Ecal (FCT) side:

- $+1.75$ (-4.0) $\leq \eta \leq +4.0$ (-1.75)
- $Z = +4.05$ (-4.05) m
- $R = 0.15 (0.15) 1.5 (1.5)$ m
- **Forward RICH Ecal (FCT) side:**
- $+1.75$ (-3.0) $\leq \eta \leq +4.0$ (-1.75)
- $Z = +4.10 (-4.10)$ m

• $R = 0.90 - 1.12$ m

• $R = 0.15 (0.5) - 1.5 (1.5)$ m

• $R = 2.8$ m

ALICE 3 charged PID requirements

RICH systems in the LoI: motivations

Extend electron and charged hadron ID at p higher than the TOF range, e.g in the barrel: e/π : 0.5 - 2 GeV/c π/K : 2.0 - 10.0 GeV/c $K/p : 4.0 - 16.0$ GeV/c

- **Barrel RICH: aerogel radiator (2cm, n=1.03) + 20 cm expansion gap + SiPM photodetector**
- **Forward RICH: idem, but lower n**

Results from "fast" parametric simulation, assuming a Cherenkov angle resolution at saturation of 1.5 mrad

Aerogel Cherenkov radiator

Cherenkov relation momentum threshold for Cherenkov emission

$$
\cos \vartheta_c = \frac{1}{n\beta} \to \beta_{th} = \frac{1}{n} \to p_{th} = \frac{m}{\sqrt{n^2 - 1}}
$$

Hydrophobic silica aerogel from Aerogel Factory Co. Ltd (Chiba, Japan):

- No degradation for exposure to humidity, easy storage
- Excellent transparency in the range 1.02-1.05
- Stable up to 10 Mrad
- ➢ **Best match with PID requirements, large choice of refractive indexes**
- ➢ **Possibility to fine tune PID threshold and range**

Barrel RICH layout options

Proxmity focusing layout:

- Single radiator layer
- Cylindrical geometry

→ con's:

o Angular resolution dominated by geometrical aberration

Aerogel focusing layout:

• Two or more aerogel layers with increasing refractive index

→ pro's:

o Photons produced in the second layer reach the pd ω same radius as the first one, thus reducing the geometric aberration error at saturation

→ con's:

o Fine tuning of focusing layer indices vs track inclination must be taken into account

Mirror focusing layout:

- Spheric/parabolic mirrors
- Projective geometry

→ pro's:

- o **Reduce/suppress geometric aberration**
- o **Reduce p.d. area**

→ con's:

- \circ ~ 30% photon loss due to double crossing of aerogel and mirror reflection
- o spherical aberration and mirror alignment to be taken into account

The photon detector

Main requirements

- Single photon sensitivity in the visible range (Photon Detection Efficiency $(PDE) > 40-50\%)$
- Integration fill factor > 90%
- Pixel \sim 3x3 mm² (down to 1x1 mm²)
- Time resolution σ < \sim 100 ps
- Magnetic field: up to 2 T
- Expected radiation load: NIEL \sim 10¹² 1 MeV n_{eq} /cm²

• **Vacuum-based devices (MCPs, LAPPDs)**

- Single photon detection efficiency \approx 25-30%
- Low noise and good radiation tolerance
- Time resolution \sim 30 ps
- *Main limitations:*
	- Sensitivity to B (x10 gain drop above 0.5 T, no gain for \perp B)
	- HV operation
	- Bulky, reduced fill factor ~ 70%, large X0
	- Cost

• **SiPM**

- PDE \approx 50%
- LV operation
- Time resolution \sim 50 ps
- *Main limitations:*
	- Noise at room T, increase above 10^{10} MeV n_{eq} /cm²
	- Cost (but lower than vacuum-based)

The photon detector

(Typ. Ta=25 °C)

Example: SiPM HPK 13360 3050CS

- o $3x3$ mm² pixel (microcell of 3600 SPADs with 50 μ m pitch)
- \circ Dark count rate (DCR) ~ 50 kHz/mm²
- o 50 ps time resolution (RMS)

overvoltage [V]

Main requirements

- Single photon sensitivity in the visible range (Photon Detection Efficiency $(PDE) > 40-50\%)$
- Integration fill factor > 90%
- Pixel \sim 3x3 mm² (down to 1x1 mm²)
- Time resolution σ < \sim 100 ps
- Magnetic field: up to 2 T
- Expected radiation load: NIEL \sim 10¹² 1 MeV n_{eq} /cm²

Proximity focusing studies summary

Detector parameters for Geant4

- R = 0.90-1.12 m, $|\Delta z|$ < 2.8 m
- 37(z) x 36 (r ϕ) tiles: Radiator: 15 cm x 15 cm SiPM layer: 15 cm x 19 cm
- Aerogel: T = 2 cm, n = $1.03 \text{ } @$ 400 nm
- SiPM pixel size: 3 x 3 mm²
- Photosensitive area: **38 m²**

Performance η dependence, for very inclined tracks:

- geometric aberration increase
- photon losses

Proximity focusing studies summary

Performance in central Pb-Pb collisions

Selection cuts

- Timing (2σ cut)
- Hough transform cut $(N_{ph,min}$ variable with track sector)

Mirror focusing studies summary

Detector parameters

- **Projective layout** with hermeticity to tracks
- Variable mirror radius to keep ΔR = 22 cm for all sectors
- \cdot 36 sectors in r ϕ , 21 sectors in Z
- 3x3 and 1x1 mm pixels
- Photosensitive area: **18.5 m²**

Mirror focusing studies summary

Similar to proximity focusing due to lower photon detection

Better performance by pixel error reduction (dominant)

Proximity focusing TOF+RICH – Projective

Detector parameters

- **Projective layout** with hermeticity to tracks
- Use TOF volume and increase proximity gap to 25 cm
- \cdot 1mm SiO₂ window coupled to SiPMs for TOF
- \cdot 36 modules in r ϕ , 21 sectors in Z
- Photosensitive area: **25.7 m²**

TOF measurement in RICH SiPMs

Layout option under study:

- Reduction of costs and material budget, two PID techniques in one device
- Performance improvement both for TOF (increase of lever arm: 0.85 -> 1.1 m) and RICH (increase of proximity gap: 20 -> 25 cm)

 $^{0-}_{2.0}$

 -1.5

 -1.0

 -0.5

 0.0

 0.5

 1.0

1.5

Pseudorapidity

1 mm SiO₂ + 0.45 mm epoxy resin

 2.0

Proximity focusing TOF+RICH – Projective

1x1 mm2 cells, **50 ps** SPTR

e-PID range extension

Goal

• Extend electron identification above 4 GeV/c Required for physics channels involving e.g. J/ $\psi \rightarrow e^+e^-$

Strategy

- Implement gaseous radiator having n ≈ 1.0006
- Gaseous radiators having large GWP (CF4, C4F10, …) must be avoided
- E.g.: SLD CRID approach on a $C_5F_{10}O + N_2$ mixture
- From molar frac.s $w_{1,2}$ to n of a gas mixture: $n_{mix} = w_1 n_1 + w_2 n_2$
- $n_{mix} = 1.0006 \Rightarrow w_{C5F100} = 20\%$, $w_{N2} = 80\%$

ECal-less scenario

- Barrel ECal radial dimensions in the LoI: 1.15-1.45 m
- Possibility to increase the RICH proximity gap to 30-35 cm (and reduce magnet radius from 1.50 m to \approx 1.35 m !!!)

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 264, Issues 2-3, 15 February 1988, Pages 219-234

A sonar-based technique for the ratiometric determination of binary gas mixtures \star

G. Hallewell, G. Crawford **, D. McShurley, G. Oxoby, R. Reif

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, USA

Received 25 March 1987, Revised 17 September 1987, Available online 28 October 2002.

El Show less

https://doi.org/10.1016/0168-9002(88)90912-6

Get rights and content

Abstract

We have developed an inexpensive sonar-based instrument to provide a routine online monitor of the composition and stability of several gas mixtures having application in a Cherenkov Ring Imaging Detector. The instrument is capable of detecting small $\langle 1\% \rangle$ fluctuations in the relative concentration of the constituent gases and, in contrast with some other gas analysis techniques, lends itself well to complete automation.

e-PID range extension

21

Cherenkov emission threshold in GeV/c

e-PID range extension

Pb-Pb central collisons

Projective Layout (ΔR = 35 cm): 2 cm **Aerogel** (1.03) + **Gas** (1.0006) + 1 mm **SiO²** window (1.47) + 0.45 mm **Epoxy resin** (1.55)

Aerogel information

- Hit timing cut: $2\sigma_t$ matching with track
- Hough transfrom cut: $N_{\text{ph,min}} \geq 12$
- PID Above C.kov threshold: $3\sigma_{\theta}$ cut

Aerogel + Gas information

- Hit timing cut: $2\sigma_t$ matching with track
- Hough transfrom cut: $N_{\text{ph,min}} \geq 12$
- PID Above C.kov threshold: $3\sigma_{\theta}$ cut
- **e [±] hyp. accepted** ⇔ **N(dmin * < d < dmax) ≥ 7**

Aerogel + Gas + TOF window information

- Hit timing cut: $2\sigma_t$ matching with track
- Hough transfrom cut: $N_{\text{ph,min}} \geq 12$
- PID Above C.kov threshold: (3 σ_{θ} cut & 3 σ_{t}) cut
- **e [±] hyp. accepted** ⇔ **N(dmin * < d < dmax) ≥ 7**

*The minimum distance **dmin** allows to exclude the hits due to photons from the TOF window which are present for all particle species

Photons timing

12

R&D topics

• Aerogel

Aerogel specs: hydrophobic, $T > 80\%$ @ 400 nm, 15 x 15 cm²

- o Optical properties (n and T homogeneity and reproducibility)
- \sim Tile size (up to 20x20 cm²) and shape
- o Multi-layer focusing (also monolithic?)

• Photodetection

SiPM specs: Pixel 1x1 mm², die (SiPM array) size \sim 1x1 cm², PDE > 40% at 450 nm, DCR < 50 kHz/mm², radiation hardness: NIEL \sim 10¹⁰ 1 MeV n_{eq}/cm² , time resolution < 100 ps, packaging fill factor > 90% (TSV interconnection)

- . Explore path towards monolithic (2D or 3D) SiPM in CMOS Imaging Sensor technology (massive R&D in industry on digital SPADs for consumer applications and automotive), to reduce costs, customize sensor and improve performance:
- ^o MIP detection by thin radiator window for TOF
- ^o Module concept and cooling integration

Ongoing R&D: aerogel characterization

- 22 samples available from Aerogel Factory LTD, Chiba, JP (purchased with LHCb)
- Four n: 1.005, 1.03, 1.04, 1.05
- Two sizes: $11x11$ cm² and $15x15$ cm²
- Measurement of transaparency and uniformity
- Dimensional/shape characterization

T mapping

Ongoing R&D: aerogel characterization

- Thickness variation: no impact on performance
- Planarity defect:
	- Can be included in Cherenkov angle reconstruction
	- According to supplier, there is margin for improvement

Ongoing R&D: prototype @ testbeam PS/T10

Ongoing R&D: prototype @ testbeam PS/T10

FEB 252

Detector parameters

- Radiator: $T_r = 2$ cm, n = 1.03-1.04
- Proximity gap: T_g =23.4 cm, Ar
- SiPM cooling: -12° < T < -5°
- $V_{ov,matrix} = 4.4 V, V_{ov,strips} = 6.9 V$

DAQ and Front-End Board (FEB)

Ongoing R&D: prototype @ testbeam PS/T10

 $\begin{array}{c}\n 220000 \\
\hline\n 518000 \\
\hline\n 0\n \end{array}$

16000F

14000⊣

 $12000 -$

 $10000 -$

 8000

 $6000 -$

4000 \Box

 $2000 -$

لتتاه

 Ω

Time resolution measurements

3 mm thick NaF radiator ($n = 1.3319$ @ 400 nm), 4 mm apart from the central matrix

Limitation

No reference time available \Rightarrow Times referred to the cluster mean time

Test beam results

Measured mean number of clustered SiPMs : $N_{NaF} \approx 11{\text -}12$ Measured single SiPM time resolution: $\sigma_{SIPM} \approx 160 \text{ ps}$ Extrapolated mean cluster time resolution: $\sigma_{\langle t \rangle} = \frac{\sigma_{SIPM}}{\sqrt{N_{NaF}}} \approx 47 \text{ ps}$

There is room for improvement

Further investigations are being carried out for improving timing results: offsets and slewing corrections, thresholds for data acquisition, ASIC syncronization, etc.

SiPM R&D

• All performance simulations have been based conservatively on commercial analogue SiPMs, while custom devices are already available with better PDE, DCR

- The access to customized SiPM opens the possibility of developing innovative technologies and detector applications
- Some key topics:
	- Single cell access (for screamer SPADs disabling and DCR reduction), active quenching (to improve fill factor and timing)
	- ^o PDE improvement by: E-field engineering, A/R coating , max fill factor (BSI or microlenses)
	- o DCR reduction by: E-field engineering, operation at lower V_{ov} if large enough PDE, cooling integration
	- ^o Radiation hardness: cell layout, cooling/annealing
	- \circ Timing performance, precise event time stamping for online and offline filtering (also wrt DCR): cell layout

FBK NUV-HD technology

SiPM packaging

- Module size \sim 20.4x20.4 cm² (0.02 cm spacing between dies,) -> fill factor > 99%
- Area to be covered: \sim 30 m² -> \sim 750 modules (950 assuming 80% yield), 380000 SiPM dies (630000 SiPM dies assuming 60% yield)
- Packaging options:
	- 2D (monolithic digital SiPM, **SPAD fill factor**? PDE? DCR? RH?)
	- 2.5D (using silicon interposer or PCB)
	- 3D (wafer to wafer bonding, requires further assembly on PCB)
- Cooling/annealing circuit embedding in PCB or silicon interposer (linked to DCR and radiation hardness)

Direct detection of charged particles with SiPM

At the passage of a single charged particle → very **high number of SPADs** fire **https://dx.doi.org/10.1088/1748-0221/17/06/P06007**

Effect (due to **Cherenkov light** produced in the protection layers **https://doi.org/10.48550/arXiv.2210.13244**

As a consequence:

- Higher **efficiency** (wrt what expected from simple Fill Factor, FF)
- And also **time resolutions** around/below 30 ps

Further step: exploit SiPM for TOF measurements by detection of Cherenkov photons produced in a thin window

Anti-reflective coating

SiPM Anti Reflective Coating

Reflection effects

- Fresnel reflection between window and resin or resin and Silicon + total reflection between window and Ar
- Loss of photons from aerogel (accounted in the PDE)
- A larger PDE could be achieved by limiting reflection effects

Solutions:

- Conventional single-layer antireflection coating (ARC)
- (Multi-layer) ARC: double-layer ARC and triple-layer ARC
- Textured Si surface with upright random nano/micro pyramids formed by anisotropic etching.

Additional benefits:

- The PDE increase allows operation at lower V_{ov} hence lowerd DCR
- Limitation of crosstalk from reflection at Si interface of Cherenkov photons produced inside TOF window

Plans towards TDR

