Acceleratori Hardware per Applicazioni Al

Stefano Rosati
INFN Sezione di Roma

Intro and Outline

A very brief (and incomplete) introduction on Machine Learning
o Machine learning algorithms
- Definition, training and testing
o Some example algorithms and models
o How to prepare a model, training and input data

Some examples of Deep Neural Network (DNN) and other types of neural network
relevant in the field of High-Energy Physics (HEP)

Inference on CPU / GPU and FPGA

o Some of the existing tools for inference optimization
o The usage of hardware acceleration

Existing tools and workflows

Bibliography and useful links
o Links to documentation in the slides and in the last summary slide

Stefano Rosati Al Accelerators

Brief introduction on Machine Learning

What are Machine Learning algorithms

Machine Learning (ML) is a part of the more general field of Artificial Intelligence
o Focused on trying to reproduce the tasks accomplished by the human brain

Although the development of ML started in the mid of last century, the field has
seen a huge development in the last few years

o ML is very present in all aspects of our everyday life

This steep increase in ML diffusion is due to various reasons, mainly:
o Development of better algorithms, able to deal with increasingly complex problems

- E.g. image and speech recognition, analyses of large data samples

o Increase of the computing power, via new technologies (improved CPUs , GPUs...), that
allowed the realisation of the first "Deep Learning" algorithms

o |Increase of the amount of data available, with easier access to them
- Storage system and networks
High-Energy Physics (HEP) experiments are, since a while, profiting a lot of ML
algs

o Usage is further increasing in online selection applications, now also via hardware
acceleration

Stefano Rosati Al Accelerators

Deep learning

- Conventional computing:

o A developer provides to the processor a program, containing the instructions to process
some given input data and provide an output

- Machine Learning:

o The developer provides input data and the desired result, and ML produces an algorithm
(a program) capable to provide that result

» Deep learning is a type of ML, using i
artificial neural network (NN) with multiple R T Result
Iayers Programming

--";
R_—:/_;g- M Result
— Q7 WY Program
*\Q“ e Machine Learning
'.':_v"- = l R
AN ek
_Q¢“ ”¢ .l')
R W
5-":'33 X

Stefano Rosati Al Accelerators 5

Neural networks

* The basic constituent of all DNN is the neuron

- Neurons are logical elements organised in layers: ; f:idden
ayers
o The first layer gets the input values y,\
o Then, in each of the following layers a neuron is output
connected to each neuron of the previous layer ‘ . Iayer
| N,
_ _ input 7 ‘ ‘ O .
- The status of a neuron is determined by layer ." ‘A“
calculating a linear combination of the values of " ‘
the connected neurons, plus a bias ‘
+ The value of a non-linear function of this linear X , mear nonlinearity
combination is the status of the neuron \ e
input X, — 2, wxs b — — output
W3 7
- The values of each layer are forward-propagated /

in this way, to calculate the values %
of the neurons in the following layers

o Feed-forward network

Stefano Rosati Al Accelerators 6

Activation functions

- Transform the linear input to a node into a non-linear neuron output

 This allows to describe also very complex non-linear correlations among many
iInput variables

- Alinear function can also be used, but this would make the intermediate layers useless

Xn = gn(Wn,n—lxn—l + bn)

Perceptron Sigmoid Tanh
1 ' 17 / 1t |
X O(z) X L °l tanh(z)
-1 -1 1+e~? 1
5 0 5 0 5 0
6 ReILU 6 Leaky‘ RelLU 6 ELU
41 max(0, 2) 410.12if 2 <0 41 oz _1if2<0
2 2 Lifz>0 2 zifz>0
0 0 0
-5 0 -5 0 -5 0

Stetano Hosatl

Al Accelerators

How many parameters ?

- The number of parameters of a NN can be easily calculated from its structure

- So for example a fully-connected DNN with
o N1 input neurons
o 2 intermediate layers with N2 and N3 neurons respectively
o One output layer with N4 neurons

o The number or pars would be: —_— . . :
N1XN2+N2 + N2xN3+N3 + N3xN4+N4 = 2i=2(Ni X(Ni-1+1))

= N2x(N1+1) + N3x(N2+1) + N4x(N3+1)

 This is a useful number to know for various reasons:
o Roughly estimating the size of the needed training sample

o Estimating the resources needed -> quantify the number of multiplications and sums to be performed to
infer the network result

- The resources for training are large (CPU, GPU, data) but those for inference are usually
much smaller

« Very complex networks used in common applications can reach various orders of magnitude
more than what we use in HEP

Stefano Rosati Al Accelerators

The training step

- The training consists of determining the weights that maximise the accuracy of
the network

o Generally based on a "Training dataset" i.e. a large set of data whose features | would like
my network to learn

- To do this, one needs to define a "loss function” to quantify the difference
between the network prediction and the target

- Different loss functions are used for:
o Categorization (classify objects / events)

- Is this picture showing a cat ? / Is this a jet coming from a b-quark ?
o Regression (infer values)

- What is the speed of that car ? What is the energy of that b-quark ?

E(w) = - Zy log §: (W) + (1 — y:) log [1 — §i(w)] E(w) = Z(yz Ji(w))*

» Minimising the loss function is the task of the training

Stefano Rosati Al Accelerators

Training and backpropagation

- During the training process, the network weights are corrected iteratively

* In each iteration (learning "epoch"):
o The input neuron values are set

o

The values are forward-propagated to get all neuron values

O

The loss function is calculated based on the values of the last network layers and on the
target values (features)

O

Weights are modified based on the derivative of the loss function in each weight

O

A "learning-rate" can be applied, multiplying the derivatives
- Normally a number << 1 , to make the learning proceed smoothly

- The learning rate can also be function of the epoch, starting with larger values and then
decreasing

» Training can be done on CPUs, or on GPUs

o GPUs are significantly more effective: optimised for parallel calculations in matrix
operations

o Most ML packages support GPU optimization

Stefano Rosati Al Accelerators

10

Training and test samples

The training dataset should of course be as large as possible,

The performance needs to be tested on a statistically independent sample (test
sample)

o check that the algorithm didn't learn to recognize better the samples that were used during the
training

o This "overtraining" can happen in particular when a ML alg has too many parameters, with respect
to the number of samples in the training dataset

Data preparation is an important step of the training

model loss model accuracy
— train — train
1.67 —— validation 0807 validation
1.4 - 1 0.75 -
1 0.70 -
1.2 1 -
O
2 S
k! § 0.65
1.0 4 ©
0.60
0.8 -
0.55 -
0.6 -
0.50 A
0 20 40 60 80 100 0 20 40 60 80 100

epoch epoch

Stefano Rosati Al Accelerators

Convolutional neural networks (CNN)

E% E:Itl\)r'\ected
N Layer

Convolution Coarse-graining Convolution Coarse-graining
(pooling) (pooling)

Often used for image recognition
o Inputs are the image pixels with a depth corresponding to the number of channels (RGB)

Groups of neurons (e.g. pixels) in the input layer are connected to each neuron
in the hidden layer

o These "local receptive fields" identify features of the input images

Weights and biases are the same for all hidden neurons in a certain layer
o This makes the network able to recognise a given feature at any location in an image

Pooling to select the neuron with the largest value in a given region
o Reduces the complexity of the network selecting the elements that carry more information

Stefano Rosati Al Accelerators 12

Recurrent neural networks

- Designed to recognise sequences and patterns (text, speech, sounds...) can be
used in HEP for e.g. recognition of patterns (tracks, clusters in particle-flow etc..)

N
r@ . N, E.g. long-short term memory (LSTM) nodes
a AL A]

|
©

multiplication addition
ole ~ 00 - 00 7 o L
c,, T 00 C,
cell state + cell state
multiplication multiplication
- Q0
f
Internal structure based on single- % @ % /%;2\
layer NNs OO0
forge(‘ gate ‘ input gates ‘ output gate
. . . I n I l | § ‘
More llndlcated to work with sparse” gg .- 00000 . 00
data, i.e. do not process full images h,, concatenate n
hidden ‘ftate / ? hidden i;state /
OO0

xt

input

Stefano Rosati Al Accelerators 13

Algorithms examples

Some examples of algorithms that can be used for &/ Toy model
. . DNN RMS: 109um
the trigger of HEP experiments: 2
.
Hits position (can use DNN) .
o For example strips / pixels measuring charges, 3
combined in clusters 2
o Regression of the hit position . | ;
Pattern recognition for tracking .
o Recognise the hits on a track in presence of high
backgrounds |
e Prediction
o . - Toy model 15 kHz/cm?
Pattern recognition for trigger
o Recognise patterns corresponding é === s —=
to exotic signatures s :%}L_ — =
R at -

-500 -

- For example displaced vertices

—1000 1

-1500 T T T T
1000 2000 3000 4000 5000

layer

Stefano Rosati Al Accelerators 14

Algorithms examples

- RNN (LSTM nodes) for pattern recognition

o |deal to run on "sparse" data, i.e. in a detector
with large number of channels, only look at those
that are on event-by event

CNN for image recognition

o Transform patterns of detector signals into
Images
o Use convolution and pooling to reduce complexity

EPJ Web of Conferences 245, 01021 (2020)

Stefano Rosati Al Accelerators

Layer index

LANNL I I L N B L L) L L B B L L |

of ATLAs|Sirhu|atio|'~. Preliminary —RPG hit = -
8F- E
IR .
6F =
JI N
4F -
R
2 :
Ll
0:.1.. oo b
0 50 100 150 200 250 300 350
M
(& & & 3‘\
2 |5 |3 :
-g ﬁ -g. -g.
= g g g
\ 1)
4 t %
ot ot | | tebated | | bkttt i
A
Unrolled LSTM
h
g ™
) s b 5
- - R 00 seeeescccss -
3 3 3 3
u Y

15

https://cds.cern.ch/record/2709652/files/10.1051_epjconf_202024501021.pdf

Packages for deep learning

There are many open-source python-based frameworks, that can be used in
all steps of deep-learning
o From model definition and implementation, to training, testing and inference

Some examples:

o Keras : high-level framework, wrapper of other packages (TensorFlow in particular), has
many pre-defined structures

o TensorFlow: supported by Google, allows to explicitly construct network structures and
data flow through graph nodes

o Pythorch: implements all the mathematical functions needed to train and test ML algs
o And others..

Plus, many python tools are available for analysis and as general utilities
(Numpy, matplotlib, etc...)

A site that shows nicely how a DNN works, from TensorFlow:
o TensorfFlow playground

Stefano Rosati Al Accelerators 16

https://keras.io/
https://www.tensorflow.org/
https://pytorch.org
https://playground.tensorflow.org

Saving the models

At the end of the model definition and training, the model is saved in the form
of a structure and a set of weights

o Normally the format is an HDF5 file (.h5) a hierarchical data format widely used to store
large amounts of data, but other formats are possible

The model can be then used get the output on any set of input data

Weights and network structure can also be inspected

Once the model is trained, validated and saved, can be used on any platform

Stefano Rosati Al Accelerators

17

ML algorithms and hardware accelerators

HEP experiments trigger

-« The trigger systems at the LHC experiments require a high level of computing

parallelism
o High bandwidth, low latency

- Can profit of hardware acceleration for
the most computing intensive calculations

- E.g. ATLAS Phase-Il design

« Global Event Processor at LO,
collecting data from all systems
o Based on a farm of Xilinx Versal Premium

o |ldentify physics objects with algorithms similar
to those used in the offline

 Event Filter

o Heterogeneous farm based on CPU and
FPGA/GPU

Stefano Rosati Al Accelerators

ATLAS Phase-ll trigger

Inner Tracker

A
L)

Calorimeters Muon System
_________ R .
gessssssssssssssaenat : ------------ '----: E

N IEEEEEEEED EEEE v_v
I

Sector Logic Processor
Endcap MDT Trigger

Y 4 LOMuon)
Barrel NSW Trigger

Sector Logic Processor

1

.

P Y
. \E) MUCTPI

§___)(Global Trigger B

Event (
Processor

. J

v

FELIX <- - - CTP DR

Data Handlers <---- LO trigger data (40 MHz)

v

<~ - L0 accept signal
<— Readout data (1 MHz)

Dataflow

<~ - EF accept signal Output

v

data (10 kHz)
|

Event Filter

Processor Farm

Permanent
Storage

19

CPUs, GPUs and FPGAs for ML inference

CPU and GPU have a fixed hardware structure
o Able to execute a large variety of instructions, provided by the programs

GPUs have the capacity to process in parallel large amounts of data, making them
ideal for e.g. graphics processing, but also ML algs training and inference

FPGA: Field Programmable Gate Arrays

o Flexible architecture

o Low energy consumption

o Latency more fixed than for CPU and GPU that have some level of processing dependency
The main difference with CPU and GPU is that their hardware is "adaptive"

o Programming an FPGA means to actually modify its internal connections to get an hardware that
is exactly designed for the particular application we want to execute

o This characteristic provides the "hardware acceleration" of functions that are computationally
heavy

The circuits can be modified via an Hardware Description Language (HDL) program

Stefano Rosati Al Accelerators 20

CPU and GPU inference

- Inference on CPU and GPU can be run with each framework's library and
model format (Keras, TensorFlow,

« ONNX (Open Neural Network Exchange)
is an open source framework that Float model [f[]
optimizes the usage of CPU resources

o Shared model format that can be used on any
platform

o Optimized inference time also on CPUs

ONNX runtime engine TensorRT EE
- TensorRT

o Framework produced by NVIDIA to
run Optlmlzed inference on GPU Optimised CPU inference Optimised GPU inference
o Can start from any model trained

with TensorFlow or PyTorch

Stefano Rosati Al Accelerators 21

https://onnxruntime.ai/docs/
https://developer.nvidia.com/tensorrt-getting-started

FPGAS

 The structure of an FPGA includes, among other things:

o A Look-Up-Table (LUT) implementing any logical function of N boolean

variable

o A Digital Signal Processing (DSP) is an Arithmetic Logic Unit operating on

8-bits int inputs

o A BRAM memory: store some of the neural response functional forms, and data

E.g. Xilinx Versal VCK5000 Xn = gn(Wnn_1Xn_1 + by)

has ~900K LUT and ~2K DSP units

o
\J

N N :

48-Bit Accumulator/Logic Unit

P=Bx(A+D)+C
P+=Bx(A+D)

@

25 18
> Multiplier

\
g SRSy (O

> Pre-adder

X1 x0

H

Pattern Detector

X13469-102417

Stefano Rosati Al Accelerators

ML inference on FGPA

Network weights 32-bits floating point numbers
o Quite consuming in terms of resources, memory and computing time

Quantization:
o Transform the weights into int8 (8-bits integers) before compiling the model for

In general the performance remains good also after quantization (can depend
on the algorithms type)

Possible to run a Quantization-Aware-Training (QAT)
o Quantize the weights in the feed-forward step
o Go back to floating point in backpropagation

Stefano Rosati Al Accelerators

23

Vitis-Al workflow

(Pr“}‘i“gl) quantization compilation
B optiona) @ = GG o oeeees . ‘
\ o | @ \ @ — 100101010010 |
@ o _ El - . 110010101011 |
A\ v o ! S ¢ | 101100101010
.« = = = g - _ -> : . —> -> S
e s . santizatior Neural Network | de-generator DPU Instruction |
- float (pruned) - . od le] Erp— FPGA inference
float model model quantized mode
: : . : XILINX
- Trained float model is converted to a compiled version VITIS
that can be run on an FPGA y

 Pruning reduces the number of operations
o The number of DSP on an FPGA can be the limiting factor

- Quantization goes from float32 to int8

- Compiler maps the model to a set of instructions and dataflow model
o Also various optimizations on scheduling and memory usage

- Set of APIs for model and data loading on the DPUs, and performance profiler
« Support for both multi-threading and multi-processing

Stefano Rosati Al Accelerators 24

Quantization example

- Simple hit categorization with an RNN

10° 4 10° 4
Quantized model
Float model
-1 o mrind hite - Background hits
w0 3 hits - <T\r;ckkuhi\t‘s - 1077 5 3 hlts Track hits
10-2 4 Events with tracks Events with tracks
10-2 4
1073 -
10-3 4
10~ -
0.0 0.2 0.4 0.6 0.8 1.0] | \ 4] !
0.0 0.2 0.4 0.6 0.8 1.0
NN output
NN output
g 4 | |
......... RSN SRS WU SRS SO SN SE— S——
3 ¥re W' ARt
&= iy v\
) A
0.95 LY,
"v' v ¥
: H H 'y v
—=— 3 hits float model "'
09 —*— 3 hits quantized model v

—*— 7 hits float model : v i
.| = 7 hits quantized mode! ;

0.85

[Eventswithtracks "

III|Tlll‘l[ll]llll’llllll

0.75 .._.._

_lllllllllllllllllllllllllilllllllllllllllllllllll

092 093 094 095 096 097 098 0.99 1 1.01
rejection

Stefano Rosati Al Accelerators

his4dml workflow

* In hls4dml a compressed (pruned) Tenii:‘;fzw
. 1 kleEs Y. Co-processing kernel
model s converted into A~ =" hls 4/ ml
HDL using S
Vivado High-Level Synthesis \, é
SHESE Custom firmware
- Also in this case pruning and Uspel mchin larin I —

quantization \f /
to reduce the resources usage

1eq hls4ml Reuse factor = 1, Kintex Ultrascale
3.0 4 —— Full model
—#— Pruned model
5 s before pruning after pruning
2.0 - pruning _ _
synapses
[a
wn
0 1.5 1
pruning s
1.0 A neurons
0.5 A
00 - T T T T
<8,6> <16,6> <24,6> <32,6> <40,6>

Fixed-point precision

Stefano Rosati Al Accelerators 26

https://fastmachinelearning.org/hls4ml/
https://ieeexplore.ieee.org/document/6912784

Checking the performance

- Compare performance of the float model to the
quantized and FPGA

o Pruning/optimization not used yet
- Algs performance and timing
o ROC curve for efficiency/rejection
o Resolution for regression
o Timing as a function of batch size (hnumber of tested

e

30000 A

25000 -

20000 -

15000 A

10000 A

5000 A

elements)
- Power and resources usage are also important to be
checked

‘D il AL T i
£ _ ATLAS Simulation Preliminary + GPU, TensorRT i
() - Toy detector, CNN model i Mggsal, DPUBpwe a

£ O U250
"q-)' 102 — @ CPU, ONNX ° —
e ° z
9 - @ o 7]
o) - i
c - -

+
10 o E
- + .
B *]
B N i
1+ " =
: I 1 II 1 1 1 1 1 11 I| :
1 10 10°
batch size
Stefano Rosati Al Accelerators

1.0
0.9
No significant loss in
o performance for float model
to FPGA inference
0.7 4
us0
—quant
- float
0.6 Ll T T Ll
0.95 0.96 0.97 0.98 0.99 1.00
rej
Toy model

Float model (GPU)
Quantized model (GPU)

FPGA

-2.0

-1.5 -1.0 -0.5 0.0 0.5 1.0

1.5 2.0
Residuals (mm)

27

Some bibliography and useful links

- Most of the material for this presentation has been taken from:

« Deep learning textbook

- A high-bias, low-variance introduction to Machine Learning for physicists
o https://doi.org/10.1016/j.physrep.2019.03.001

» Vitis-Al documentation (from AMD-Xilinx)
- Xilinx accelerator environment development help

- Fast inference of deep neural networks in FPGASs for particle physics
(HLS4ML)

* hls4ml documentation
- Xilinx vivado high level synthesis: Case studies

Stefano Rosati Al Accelerators 28

https://www.deeplearningbook.org/
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/ehb1504034292718.html
https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027/pdf
https://fastmachinelearning.org/hls4ml/
https://ieeexplore.ieee.org/document/6912784

Conclusions and "disclaimer"

 Tried to give a quick summary, no time to cover everything in more detalil

- ML algs examples were chosen to give a general idea outline the aspects
common to all ML algs

« There are many more ML algs and Neural Network types (Graph NN,
Transformers etc...) and many more learning mechanisms (unsupervised,
teacher-student or "knowledge distillation" etc..)

- Also for GPU/FPGA usage, there are other considerations and optimisations
to be done (power consumption, resources usage, costs)

Stefano Rosati Al Accelerators 29

