
Stefano Rosati
INFN Sezione di Roma

Acceleratori Hardware per Applicazioni AI

AI AcceleratorsStefano Rosati

Intro and Outline

• A very brief (and incomplete) introduction on Machine Learning
⚬ Machine learning algorithms

- Definition, training and testing
⚬ Some example algorithms and models
⚬ How to prepare a model, training and input data

• Some examples of Deep Neural Network (DNN) and other types of neural network
relevant in the field of High-Energy Physics (HEP)

• Inference on CPU / GPU and FPGA
⚬ Some of the existing tools for inference optimization
⚬ The usage of hardware acceleration

• Existing tools and workflows

• Bibliography and useful links
⚬ Links to documentation in the slides and in the last summary slide

2

Brief introduction on Machine Learning

AI AcceleratorsStefano Rosati

What are Machine Learning algorithms
• Machine Learning (ML) is a part of the more general field of Artificial Intelligence

⚬ Focused on trying to reproduce the tasks accomplished by the human brain

• Although the development of ML started in the mid of last century, the field has
seen a huge development in the last few years
⚬ ML is very present in all aspects of our everyday life

• This steep increase in ML diffusion is due to various reasons, mainly:
⚬ Development of better algorithms, able to deal with increasingly complex problems

- E.g. image and speech recognition, analyses of large data samples
⚬ Increase of the computing power, via new technologies (improved CPUs , GPUs...), that

allowed the realisation of the first "Deep Learning" algorithms
⚬ Increase of the amount of data available, with easier access to them

- Storage system and networks

• High-Energy Physics (HEP) experiments are, since a while, profiting a lot of ML
algs
⚬ Usage is further increasing in online selection applications, now also via hardware

acceleration

4

AI AcceleratorsStefano Rosati

Deep learning

• Conventional computing:
⚬ A developer provides to the processor a program, containing the instructions to process

some given input data and provide an output
• Machine Learning:

⚬ The developer provides input data and the desired result, and ML produces an algorithm
(a program) capable to provide that result

• Deep learning is a type of ML, using  
artificial neural network (NN) with multiple  
layers

5

AI AcceleratorsStefano Rosati

Neural networks
• The basic constituent of all DNN is the neuron
• Neurons are logical elements organised in layers:

⚬ The first layer gets the input values
⚬ Then, in each of the following layers a neuron is 

connected to each neuron of the previous layer

• The status of a neuron is determined by
calculating a linear combination of the values of
the connected neurons, plus a bias

• The value of a non-linear function of this linear
combination is the status of the neuron

• The values of each layer are forward-propagated
in this way, to calculate the values  
of the neurons in the following layers
⚬ Feed-forward network

6

AI AcceleratorsStefano Rosati

Activation functions

• Transform the linear input to a node into a non-linear neuron output
• This allows to describe also very complex non-linear correlations among many  

input variables
• A linear function can also be used, but this would make the intermediate layers useless

7

AI AcceleratorsStefano Rosati

How many parameters ?
• The number of parameters of a NN can be easily calculated from its structure

• So for example a fully-connected DNN with
⚬ N1 input neurons
⚬ 2 intermediate layers with N2 and N3 neurons respectively
⚬ One output layer with N4 neurons
⚬ The number or pars would be:  

N1xN2+N2 + N2xN3+N3 + N3xN4+N4 = 
= N2x(N1+1) + N3x(N2+1) + N4x(N3+1)

• This is a useful number to know for various reasons:
⚬ Roughly estimating the size of the needed training sample
⚬ Estimating the resources needed -> quantify the number of multiplications and sums to be performed to

infer the network result
• The resources for training are large (CPU, GPU, data) but those for inference are usually

much smaller

• Very complex networks used in common applications can reach various orders of magnitude
more than what we use in HEP

8

Σi=2(Ni x(Ni-1+1))

AI AcceleratorsStefano Rosati

The training step
• The training consists of determining the weights that maximise the accuracy of

the network
⚬ Generally based on a "Training dataset" i.e. a large set of data whose features I would like

my network to learn
• To do this, one needs to define a "loss function" to quantify the difference

between the network prediction and the target
• Different loss functions are used for:

⚬ Categorization (classify objects / events)
- Is this picture showing a cat ? / Is this a jet coming from a b-quark ?

⚬ Regression (infer values)
- What is the speed of that car ? What is the energy of that b-quark ?

• Minimising the loss function is the task of the training

9

AI AcceleratorsStefano Rosati

Training and backpropagation

• During the training process, the network weights are corrected iteratively

• In each iteration (learning "epoch"):
⚬ The input neuron values are set
⚬ The values are forward-propagated to get all neuron values
⚬ The loss function is calculated based on the values of the last network layers and on the

target values (features)
⚬ Weights are modified based on the derivative of the loss function in each weight
⚬ A "learning-rate" can be applied, multiplying the derivatives

- Normally a number << 1 , to make the learning proceed smoothly
- The learning rate can also be function of the epoch, starting with larger values and then

decreasing

• Training can be done on CPUs, or on GPUs
⚬ GPUs are significantly more effective: optimised for parallel calculations in matrix

operations
⚬ Most ML packages support GPU optimization

10

AI AcceleratorsStefano Rosati

Training and test samples
• The training dataset should of course be as large as possible,
• The performance needs to be tested on a statistically independent sample (test

sample)
⚬ check that the algorithm didn't learn to recognize better the samples that were used during the

training
⚬ This "overtraining" can happen in particular when a ML alg has too many parameters, with respect

to the number of samples in the training dataset
• Data preparation is an important step of the training

11

AI AcceleratorsStefano Rosati

Convolutional neural networks (CNN)

• Often used for image recognition
⚬ Inputs are the image pixels with a depth corresponding to the number of channels (RGB)

• Groups of neurons (e.g. pixels) in the input layer are connected to each neuron
in the hidden layer
⚬ These "local receptive fields" identify features of the input images

• Weights and biases are the same for all hidden neurons in a certain layer
⚬ This makes the network able to recognise a given feature at any location in an image

• Pooling to select the neuron with the largest value in a given region
⚬ Reduces the complexity of the network selecting the elements that carry more information

12

AI AcceleratorsStefano Rosati

Recurrent neural networks
• Designed to recognise sequences and patterns (text, speech, sounds...) can be

used in HEP for e.g. recognition of patterns (tracks, clusters in particle-flow etc..)

13

 E.g. long-short term memory (LSTM) nodes

Internal structure based on single-
layer NNs

More indicated to work with "sparse" 
data, i.e. do not process full images

AI AcceleratorsStefano Rosati

Algorithms examples

• Some examples of algorithms that can be used for
the trigger of HEP experiments:

• Hits position (can use DNN)
⚬ For example strips / pixels measuring charges,  

combined in clusters
⚬ Regression of the hit position

• Pattern recognition for tracking
⚬ Recognise the hits on a track in presence of high

backgrounds

• Pattern recognition for trigger
⚬ Recognise patterns corresponding  

to exotic signatures
- For example displaced vertices

14

AI AcceleratorsStefano Rosati

Algorithms examples

• RNN (LSTM nodes) for pattern recognition
⚬ Ideal to run on "sparse" data, i.e. in a detector  

with large number of channels, only look at those  
that are on event-by event

• CNN for image recognition
⚬ Transform patterns of detector signals into  

images
⚬ Use convolution and pooling to reduce complexity

15

EPJ Web of Conferences 245, 01021 (2020)

https://cds.cern.ch/record/2709652/files/10.1051_epjconf_202024501021.pdf

AI AcceleratorsStefano Rosati

Packages for deep learning

• There are many open-source python-based frameworks, that can be used in
all steps of deep-learning
⚬ From model definition and implementation, to training, testing and inference

• Some examples:
⚬ Keras : high-level framework, wrapper of other packages (TensorFlow in particular), has

many pre-defined structures
⚬ TensorFlow: supported by Google, allows to explicitly construct network structures and

data flow through graph nodes
⚬ Pythorch: implements all the mathematical functions needed to train and test ML algs
⚬ And others..

• Plus, many python tools are available for analysis and as general utilities
(Numpy, matplotlib, etc...)

• A site that shows nicely how a DNN works, from TensorFlow:
⚬ TensorfFlow playground

16

https://keras.io/
https://www.tensorflow.org/
https://pytorch.org
https://playground.tensorflow.org

AI AcceleratorsStefano Rosati

Saving the models

• At the end of the model definition and training, the model is saved in the form
of a structure and a set of weights
⚬ Normally the format is an HDF5 file (.h5) a hierarchical data format widely used to store

large amounts of data, but other formats are possible
• The model can be then used get the output on any set of input data

• Weights and network structure can also be inspected

• Once the model is trained, validated and saved, can be used on any platform

17

ML algorithms and hardware accelerators

AI AcceleratorsStefano Rosati

HEP experiments trigger

• The trigger systems at the LHC experiments require a high level of computing
parallelism
⚬ High bandwidth, low latency

• Can profit of hardware acceleration for  
the most computing intensive calculations

• E.g. ATLAS Phase-II design
• Global Event Processor at L0,  

collecting data from all systems
⚬ Based on a farm of Xilinx Versal Premium
⚬ Identify physics objects with algorithms similar  

to those used in the offline

• Event Filter
⚬ Heterogeneous farm based on CPU and  

FPGA/GPU

19

ATLAS Phase-II trigger

AI AcceleratorsStefano Rosati

CPUs, GPUs and FPGAs for ML inference
• CPU and GPU have a fixed hardware structure

⚬ Able to execute a large variety of instructions, provided by the programs

• GPUs have the capacity to process in parallel large amounts of data, making them
ideal for e.g. graphics processing, but also ML algs training and inference

• FPGA: Field Programmable Gate Arrays
⚬ Flexible architecture
⚬ Low energy consumption
⚬ Latency more fixed than for CPU and GPU that have some level of processing dependency

• The main difference with CPU and GPU is that their hardware is "adaptive"
⚬ Programming an FPGA means to actually modify its internal connections to get an hardware that

is exactly designed for the particular application we want to execute
⚬ This characteristic provides the "hardware acceleration" of functions that are computationally

heavy
• The circuits can be modified via an Hardware Description Language (HDL) program

20

AI AcceleratorsStefano Rosati

CPU and GPU inference

• Inference on CPU and GPU can be run with each framework's library and  
model format (Keras, TensorFlow,

• ONNX (Open Neural Network Exchange)  
is an open source framework that  
optimizes the usage of CPU resources
⚬ Shared model format that can be used on any  

platform
⚬ Optimized inference time also on CPUs

• TensorRT
⚬ Framework produced by NVIDIA to  

run optimized inference on GPU
⚬ Can start from any model trained  

with TensorFlow or PyTorch

21

https://onnxruntime.ai/docs/
https://developer.nvidia.com/tensorrt-getting-started

AI AcceleratorsStefano Rosati

FPGAs

• The structure of an FPGA includes, among other things:
⚬ A Look-Up-Table (LUT) implementing any logical function of N boolean  

variable
⚬ A Digital Signal Processing (DSP) is an Arithmetic Logic Unit operating on  

8-bits int inputs
⚬ A BRAM memory: store some of the neural response functional forms, and data

22

P=Bx(A+D)+C
P+=Bx(A+D)

E.g. Xilinx Versal VCK5000  
has ~900K LUT and ~2K DSP units

AI AcceleratorsStefano Rosati

ML inference on FGPA

• Network weights 32-bits floating point numbers
⚬ Quite consuming in terms of resources, memory and computing time

• Quantization:
⚬ Transform the weights into int8 (8-bits integers) before compiling the model for

• In general the performance remains good also after quantization (can depend
on the algorithms type)

• Possible to run a Quantization-Aware-Training (QAT)
⚬ Quantize the weights in the feed-forward step
⚬ Go back to floating point in backpropagation

23

AI AcceleratorsStefano Rosati

 Vitis-AI workflow

• Trained float model is converted to a compiled version  
that can be run on an FPGA

• Pruning reduces the number of operations
⚬ The number of DSP on an FPGA can be the limiting factor

• Quantization goes from float32 to int8
• Compiler maps the model to a set of instructions and dataflow model

⚬ Also various optimizations on scheduling and memory usage
• Set of APIs for model and data loading on the DPUs, and performance profiler
• Support for both multi-threading and multi-processing

24

AI AcceleratorsStefano Rosati

Quantization example

• Simple hit categorization with an RNN

25

AI AcceleratorsStefano Rosati

hls4ml workflow

• In hls4ml a compressed (pruned) 
model is converted into  
HDL using  
Vivado High-Level Synthesis

• Also in this case pruning and
quantization  
to reduce the resources usage

26

https://fastmachinelearning.org/hls4ml/
https://ieeexplore.ieee.org/document/6912784

AI AcceleratorsStefano Rosati

Checking the performance
• Compare performance of the float model to the

quantized and FPGA
⚬ Pruning/optimization not used yet

• Algs performance and timing
⚬ ROC curve for efficiency/rejection
⚬ Resolution for regression
⚬ Timing as a function of batch size (number of tested

elements)
• Power and resources usage are also important to be

checked

27

AI AcceleratorsStefano Rosati

Some bibliography and useful links

• Most of the material for this presentation has been taken from:

• Deep learning textbook
• A high-bias, low-variance introduction to Machine Learning for physicists

⚬ https://doi.org/10.1016/j.physrep.2019.03.001
• Vitis-AI documentation (from AMD-Xilinx)
• Xilinx accelerator environment development help
• Fast inference of deep neural networks in FPGAs for particle physics

(HLS4ML)
• hls4ml documentation
• Xilinx vivado high level synthesis: Case studies

28

https://www.deeplearningbook.org/
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/ehb1504034292718.html
https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027/pdf
https://fastmachinelearning.org/hls4ml/
https://ieeexplore.ieee.org/document/6912784

AI AcceleratorsStefano Rosati

Conclusions and "disclaimer"

• Tried to give a quick summary, no time to cover everything in more detail

• ML algs examples were chosen to give a general idea outline the aspects
common to all ML algs

• There are many more ML algs and Neural Network types (Graph NN,
Transformers etc...) and many more learning mechanisms (unsupervised,
teacher-student or "knowledge distillation" etc..)

• Also for GPU/FPGA usage, there are other considerations and optimisations
to be done (power consumption, resources usage, costs)

29

