MIDAS INTRODUCTION

Gennaro Tortone - INFN Napoli

Napoli 9-12 ottobre 2023

TABLE OF CONTENTS

e Introduction

e Main components
e Web interface

e Frontena

e Event format

e References

INTRODUCTION

WHAT IS MIDAS

MIDAS is an acronym for Maximum Integrated Data Acquisition System.

MIDAS is a general-purpose system for event-based data acquisition in small and medium
scale Physics experiments. It is an on-going development at the Paul Scherrer Institute

M
M

(Switzerland) and at TRIUMF (Canada), since 1993.

DAS is based on @ modular networking capability and a central database system.

DAS consists of a C/C++ library and several applications, which can run on many
different operating systems (Linux, Windows, MAC OS)

WHAT MIDAS CAN DO FOR YOU

data from local and/or remote clients.

provides a mean to the hardware managed by any of the client (online database)
manages the functions during run operation (start, stop, etc.)
provides a set of essential applications to and a data acquisition sequence

the collected data to various storage media

provides of the data stream to different analysis packages (ROOTANA,
manalyzer)

provides a and tools to build custom display for run monitoring and control

MIDAS COMPONENTS

COMPONENTS LIST

Buffer Manager
handles the experimental data transfer from the frontend to the backend

Message System
dedicated buffer system to handle MIDAS internal messages

Online Database (ODB)
database holding all user information related to a given experiment

Frontend Acquisition code
user code defining what is to be acquired/control over time during an active experiment

COMPONENTS LIST

RPC Server
interface connecting remote MIDAS client to your local experiment

Data Logger
MIDAS client handling the recording of the collected data to physical storage media

Data Analyzer
MIDAS client able to connect to a MIDAS data stream (or to a saved Midas data file) for data
analysis

Run Control
data flow control

COMPONENTS LIST

History System
event history storage and retrieval

Alarm Systems
overall system and user alarm

Electronic Logbook
online experiment logbook

Run Sequencer
run manager for parametric runs

BUFFER MANAGER

The buffer manager consists of a set of library functions for event collection and distribution.

A bufferis a shared memory region in RAM, which can be accessed by several processes, called

Processes sending events to a buffer are called . Processes reading events from the buffer
are called
A buffer is organized as a (First-In-First-Out) memory. Consumers can specify which type of

events they want to receive from a buffer. For this purpose each event in the data buffer contains a
MIDAS header with an event ID and other pertinent information.

Buffers can be accessed locally through the shared memory or remotely via the MIDAS server
acting as an interface to that same shared memory.

MESSAGE SYSTEM

Any client can produce status or error messages with a single call using the MIDAS library.

These messages are then forwarded to any other clients who may be available to receive these
messages, as well as to a central log file system.

The Message System is based on the buffer manager scheme, but with a dedicated header to identify
the type of message.

ONLINE DATABASE (ODB)

All relevant data for a given experiment are stored in a central database called

This database contains run parameters, logging channel information, condition parameters for front-
ends and analyzers, slow control values, status and performance data and any information defined by
the user.

The access to such a database can be remote, the connection is performed through an RPC layer.
The ODBis , similar to a file system, with directories and sub-directories.

The data are stored in and data associated with a key can be of different types such as:
byte, words, double words, float, strings, or arrays of any of those.

FRONTEND ACQUISITION CODE

The program refers to a task running on a particular computer which has access to hardware
equipment.

Each frontend can be composed of multiple
Several frontends can be attached simultaneously to a given experiment.

The frontend program is composed of a general framework which is experiment-independent, and a
set of template routines for the user to Fill in:

register the given equipment(s) list to a specific MIDAS experiment.

provide the means of collecting data from hardware sources defined by each equipment 'read’ function.

e gather these data in a known event format (e.g. MIDAS) for each equipment.

send these data to the buffer manager either locally or remotely.

periodically collect statistics of the acquisition task, and send them to the ODB.

RPC SERVER

For remote access to a MIDAS experiment, a remote procedure call (RPC) server is available:

For each incoming connection it creates a new sub-process which serves this connection over a TCP
link.

The MIDAS server not only serves client connections to a given experiment, but takes the
experiment’'s name as a parameter meaning that only one MIDAS server is necessary to manage
several experiments on the same node.

DATA LOGGER

The data logger is a client running on the backend computer receiving events from the
buffer manager and saving them onto disk, tape or via FTP to a remote computer.

It supports several parallel logging channels with individual event selection criteria. Data can currently
be written in different formats: MIDAS binary, ASCIl, ROOT and DUMP.

Basic functionality of the logger includes:

e events number limit.
e runsize limit.

e |ogging selection of particular events based on event identifier.

recording of ODB values to a MIDAS History System

dump the ODB at the begin-of-run and end-of-run states, as well as to a separate disk file in XML or ASCII format.

DATA ANALYZER

The takes care of receiving events, initializing the ROOT system and automatically booking N-
tuples/TTree for all events.

Interface to user routines for event analysis is provided.

The same analyzer executable can be used to run online (where events are received from the buffer
manager) and off-line (where events are read from file).

When running online, generated N-tuples/TTree are stored in a ring-buffer in shared memory. They
can be analysed with ROOT without stopping the run.

RUN CONTROL

A basic program supplied in the package called provides a simple and safe means of
interacting with the ODB for run control.

However, to access all the MIDAS capabilities, the MIDAS web-based run control utility should
be used.

HISTORY SYSTEM

The MIDAS is a recording function embedded in the MIDAS logger

Parallel to its main data logging function of defined channels, the MIDAS logger can store slow control
data and/or periodic events on disk file.

Each history entry consists of the timestamp at which the event has occurred, and the value(s) of the
parameter to be recorded.

At any given time, history plots can be displayed through the web with the History Page of the MIDAS
web-based Run Control utility ,or queried from the disk file through the MIDAS utility.

ALARM SYSTEM

The MIDAS is @ built-in Feature of the MIDAS server. It acts upon the description of the
required alarm defined in the ODB.

The action triggered by the alarm is left to the user through the means of a detached script.

C/C++ API allow development of user defined alarms.

ELECTRONIC LOGBOOK

The is a feature which provides the experimenter an alternative way of logging
his/her own information related to the current experiment.

The internal electronic logbook is a built-in feature of MIDAS, and the electronic logbook information
is accessible from any web browser as long as the MIDAS web server.

An external electronic log can also be used.

RUN SEQUENCER

A for starting and stopping runs is available.
This allows the user to program a set of runs to be performed automatically.

Conditions may be changed between runs, and each run may be stopped after a time or when a
certain condition is reached.

MIDAS WEB INTERFACE

MAIN PAGE

myexp Alarms: None 3 Oct 2023, 17:21:55 UTC+2
Status
Transition

oDB
Run
Messages 9 Start: Tue Oct 3 12:30:51 2023 Stop: Tue Oct 3 12:30:56 2023

Chat Stopped
Elog | Start |

Alarms: On runstatusSequencer Data dir: /opt/midas/online/

Alarms

Programs 1696346453 16:20:53.324 2023/10/03 [feudp,LOG] Program feudp on host localhost stopped
Buffers
History

Sequencer

Equipment + Status Events Events[/s] Data[MB/s]
rpi-ev RPiEvents@raspberrypi 0 0.0 0.000
rpi-sc RPiSlowControl@raspberrypi 0 0.0 0.000

Event Dump
Config
Help

Channel Events MB written Compr. Disk Level

#0: run00009.mid.Iz4 48 0.174 50.9%

Lazy Label Progress File Name # Files Total

mhttpd1 [localhost] mserver [localhost] Logger [localhost]
RPiEvents [localhost] RPiSlowControl [localhost]

myexp Alarms: None 3 Oct 2023, 17:27:44 UTC+2
Status
Transition

ODB 2

Cj Z A [_t] E] O B

Key

» Experiment
Alarms)

» System
Programs
__ » Programs
Buffers
. » Logger
History 99

» Runinfo
Sequencer

» Alarms
Event Dump -
= WebServer

Config
Help > Elog
¥ Equipment

¥ rpi-ev
» COmmon
» Statistics
» Variables
¥ rpi-sc
» COmmon
» Settings
» Statistics
» Variables

» History

PROGRAMS

myexp Alarms: None 3 Oct 2023, 17:31:23 UTC+2
Status
Transition
ODB Program Running on host Alarm class Autorestart Commands
Messages mhttpd localhost - No

Chat mserver localhost No Stop mserver |
Elog Logger localhost No Stop Logger |

Alarms RPiSlowControl localhost No Stop RPiSlowControl |
Programs

RPiEvents localhost No Stop RPiEvents

Buffers
History
Sequencer
Event Dump
Config

Help

HISTORY

myexp Alarms: None 3 Oct 2023, 17:43:27 UTC+2
Status

Transition

Grc:up:| Default V| Panel: |T—F€HV| [Keep horizontal axis when switching panels

== temperature (deg
relative humidi

nown
s

n wnown

Buffers

Q&[N

History
Sequencer
Event Dump
Config

Help

MIDAS FRONTEND

RUN STATE MACHINE

MIDAS FRONTEND

The term frontend usually refers to a "frontend task" or program running on a particular
computer which has access to hardware equipment in use by the experiment

An experiment may run several frontends, each performing different functions.

MIDAS FRONTEND

A frontend application consists of:

e a fixed experiment-independent system framework (i.e.) handling the data flow
control, data transmission and run control operation.

e 3 user part (e.q.) written by the user describing the sequence of actions to
acquire the hardware data

MIDAS EQUIPMENT

A single frontend may contain several equipments.

For example, an experiment may have a frontend to service crates of ADC, TDC and Scaler
modules. The ADC and TDC modules may be grouped together in one equipment, and the
scalers in a second equipment.

FRONTEND FEATURES

A typical frontend will;

e register the given equipment list(s) to a specific MIDAS experiment.

e provide the mean of collecting data from the hardware source defined by each
Equipment read function.

e gather these data in one of the supported formats (i.e. FIXED format or in MIDAS data
bank(s)) for each equipment.

e send these data banks to the buffer manager either locally or remotely.

o periodically collect statistics of the acquisition task, and send them to the ODB.

EQUIPMENT PARAMETERS

Each equipment has a predefined set of parameters (common parameters)

Each equipment name must be unique.
The name will be the reference name of the equipment generating the event.

Each equipment has to be associated with a unique event ID.
The event ID will be part of the event header of that particular equipment.

When in use, each equipment is associated with a unique Trigger Mask. The Trigger Mask can be modified dynamically by
the Readout Routine e.g. to define a sub-event type on an event-by-event basis.

This can be used to mix "physics events" and "calibration events" in one run and identify them later.

Trigger Mask is declared as 16-bit values.

This field specifies the name of the buffer to which the event will be sent (usually SYSTEM buffer).

EQUIPMENT TYPE

In this equipment type, no hardware requirement is necessary to trigger the readout function. Instead, the readout

routine associated with this equipment is called periodically.
The Period field in the equipment declaration is used in this case to specify the time interval between calls to the readout

function.

In this equipment Type, the name of the routine polling on a trigger source is poll_event()".

This routine must be provided in the Frontend user code by the user.
The EQ POLLED equipment type is mainly used for data acquisition based on a hardware condition becoming TRUE, at

which time the readout routine associated with the equipment is called.

EQUIPMENT TYPE

This flag is similar to the EQ _POLLED mode, except a hardware interrupt is used to trigger the event rather than a polling
loop.

Instead of passing a pointer to the polling routine, in EQ INTERRUPT mode a pointer to the interrupt configuration
routine is passed to the system.

This flag implements the multi-threading capability within the frontend code.

The polling is performed within a separate thread and uses the MIDAS Ring Buffer Functions (rb_xxx in midas.c) for inter-
thread communication.

EQ MULTITHREAD is similar to EQ_POLLED mode, except for the polling function which in the case of EQ_MULTITHREAD
resides in a separate thread.

This new type has been added to take advantage of the multi-core processor to free up CPU for tasks other than polling.

EQUIPMENT PARAMETERS

This field specifies the data format used for generating the event. Only MIDAS and "FIXED formats are valid in the
frontend.

The format must agree with the way the event is composed in the equipment Readout Routine.
This Equipment List Parameter is the enable switch (true/false) for the equipment.

This field specifies when the read-out of an event occurs or is enabled.
It is possible to combine multiple ReadOn flags.

READ_ON Flag name Value Readout Occurs
RO_RUNNING 1 While running

RO_STOPPED 2 Before stopping run

RO _PAUSED 4 When run is paused

RO_BOR 8 At the beginning of run

RO _EOR 16 At the end of run

RO_PAUSE 32 Before pausing the run

RO _RESUME 64 Before resuming the run

RO _TRAMSITIOMNS 127 At all transitions

RO_ALWAYS 255 Always (independent of the run status)

Copies the event to the /Equipment/<equipment name=/Variables ODB tree. The ODB is updated with a new event approximately every second.

RO_ODBE
- Mote that this feature is generally used only for testing or monitoring, as writing large amounts of data to the ODB takes time.

EQUIPMENT PARAMETERS

This Field specifies the time interval for Eq_PERIODIC equipment or time out value in the case of EQ _POLLED or
EQ _MULTITHREAD equipments (units are milliseconds).

This Equipment List Parameter specifies the number of events to be taken prior to forcing an end-of-run transition.
The value 0 disables this option.

This parameter enable/disable the History System for that equipment. The value (positive in seconds) controls how
frequently the history events are generated.

A positive value enables history logging, in which case the event data will also be sent automatically to the ODB in the
/Equipment/<equipment-name>/Variables tree.

MIDAS EVENT FORMAT

MIDAS EVENT STRUCTURE

26 bit 4 bit
I

S W S
| |
reserved II
sion
!

7 1
.

G4-bit

aligned a2-bit

16-bit Banks

32 bt (4 Bytes)

Bank Name (4 Chars) I

T Bank Size I’
ype (Bytes) B

32 bit (4 Bytes)
A

— EVENT_HEADER

— BANK_HEADER

32-bit Banks 32-bit Banks 64-bit Aligned

32 bit (14 Bytes) 32 bit (r} Bytes)
64-bit boundary

e -
Bank Name (4 Chars) | Bank Name (4 Chars)
— BANK32A
& 64-bit boundary

B EEEEE———
|

<

next BANK32A

next BANK32 -

MIDAS EVENT HEADER

32 bit (4 Bytes)
1

16 bit
| |

Event ID | Trigger Mask

Serial Number
Event Data Size (Bytes)

— EVENT_HEADER

identifies the event by number.
Usually 1 is used for triggered events, 2 for scaler events, 3 for HV events etc.

can be used to describe the sub-type of an event.
Consumers can request events with a specific triggering mask.

starts at 0 and is incremented by the front-end for each event.

is written by the front-end before an event is read out.
It uses the time() function which returns the time in seconds since 1.1.1970 00:00:00
UTC.

contains the size of the event in bytes excluding the header.

MIDAS BANK HEADER

26 bit
I

-
64-bit
aligned

¥

32-bit

4 bit

— .-—"J"—-
| |
reserved II
sion
/1

-

All Banks Size (Bytes)

Flags

— BANK_HEADER

Size in bytes of the following data banks including their
bank names.

The four LSB 0:3 indicate the version of the bank
structures.

This is currently "1" and used for endian detection (byte
ordering).

The 5th bit indicates that the banks are 32-bit banks (Bank
Size being 4 bytes long) and the 6th bit indicates that the
banks are 64-bit aligned using the BANK32A bank header.

MIDAS BANK DATA

32 bit (4 Bytes)

Bank Name (4 Chars)

Type I-r— BANK32

Bank Size (Bytes)

next BANK32

-]

Four characters for the name of each bank. Each bank in
an event must have a unique name.

One of the Midas Data Types TID xxx values to encode
the data type. A separate MIDAS bank must be created for
each data type needed.

Size in bytes of the following data.

EXAMPLE OF MIDAS EVENT

Evid:eeed- Mask:000@- Serial:@- Time:@x4c7a6869- Dsize:48/0x30
32 bit (4 Bytes) \#banks:1 - Bank list:-SDAS-
B

16 bit 16 bit
— Bank:SDAS Length: 32(I*1)/8(I*4)/8(Type)Type:Real*4 (FMT machine dependent)

[1
Event ID Trigger Mask 1-> 4.000e+00 1.000e+@1 1.000e+0@ 3.400e+00 3.400e+00 3.400e+00 3.400e+00 3.400e+00
Serial Number
— EVENT_HEADER
Time Stamp
Event Data Size (Bytes)
= Evid:@eel- Mask:0@@@- Serial:@- Time:@x4c7ab86b- Dsize:344/@x158

All Banks Size (Bytes |
Iﬁ BANK_HEADER \#banks:2 - Bank list:-MPETMCPP-

Bank:MPET Length: 304(I*1)/76(I*4)/76(Type) Type:Unsigned Integer*4
1-> 0x80010000 0x000P0P02 0x10010000 0x00004e2l 0x80020000 ©x000GRE02 0X20020000 OX0BRO1ST4
16-bit Banks 32-bit Banks 32-bit Banks 64-bit Aligned 9-> 0x20020000 @x00Q01660 0x20020000 0xP0VP185T 0x20020000 0xQ00Q19le 0X20020000 PX@V0V19d6

32 bit (j! Bytes) 32 bit (-jl Bytes) 32 bit (-jl Bytes) 17-> @0x40020000 @x00001a37 Ox20020000 Ox00001a7/7 Ox20020000 Ox00001ba2 @x10020000 OxB0BO4e22

f |
) - % 2 25-> @x80030000 Ox00PORDD2 Ox20030000 OxPORD1637 Ox20030000 Ox000018d1 @x20030000 Ox0@GE1Sbc
Bank Name (4 Chars)
33-> @x20030000 @x00P@1b35 Ox20030000 @x00001bb2 0x10030000 Ox00004e2]1 @xB0040000 xE0EEREB2
— BANK32 Type
~ BANK32A
Bank Size (Bytes) 41-> @x10040000 @x00004e22 Ox80050000 OxQ000E002 BXx20050000 PxO0O@13c5 Vx20050000 OxE0E17T2

i hound 49-> @x20050000 @x0000185T Ox20050000 OxQ0001976 B@x20050000 Px00001laad 0x10050000 Ox00004e2l
- -bit boundary
«

57-> 0x30060000 0Xx00V00002 Bx20060000 OX0A0015C3 Ox20060000 0x000018d8 Bx20060000 @x@OR@198d
next BANK 65-> 0Xx20060000 0x00001acs Ox10060000 Ox00004e22 OXS80B70000 OX0V000002 0x20070000 @XOORO1747
next BANK32 73-> 0x20070000 @x00@019ac 0x10070000 OXO0OA4e21

—
Bank Name (4 Chars)
Bank Size (Bytes)

1
T

next BANK32A

Bank:MCPP Length: 16(I*1)/4(I*4)/4(Type) Type:Unsigned Integer*4

1-> Bx@0B@5e4c @x0OBD352d @xBOBBH453 @xBOVO6A5b

REFERENCES

e MIDAS wiki

e MIDAS git repository
e MIDAS forum

https://daq00.triumf.ca/MidasWiki/index.php/Main_Page
https://bitbucket.com/tmidas/midas
https://midas.triumf.ca/forum

