Workshop LiteBIRD-Italia 2023 @ INFN-LNF

Beam systematics

C. Franceschet, D. Maino \& M. Bersanelli

MHFT beam systematic effects - context

- Beam systematics and LiteBIRD
- Control of beams is a critical aspect for the mission
- Very stringent requirements on beam knowledge
- Both main beam and sidelobes
- Very large number of detectors
- Beam characterization involves several steps
- Beam computation (e.g. GRASP)
- H/W measurements
- Straylight simulations through the mission
- Impact on science (mainly on r)
- Different expertises are required
- Clarify languages and definitions
- Requirements are «difficult to specify» (especially for far sidelobes)
- Coordination / joint work is crucial

MHFT beam systematic effects - summary

- Optical model (C. Franceschet)
- MFT realistic model implementation with GRASP
- MFT focal plane configuration IMo v 1.3
- Main beam \& sidelobes simulation
- Assessment of the impact of beam systematics on observations (D. Maino)
- From sidelobes to instrument requirements (from L3 to L4 reqs)
- Different convolution approaches
- Preliminary results

The MHFT optical model

- MFT optical model
- PH-PE-2lens-MFT-300x22-frozen-april2019 by Pete Hargrave (Apr. 2019)
- Aperture stop $\varnothing=300 \mathrm{~mm}$ (aperture in screen model)
- HDPE lenses ($n=1.52$)
- No tube, filters and HWP
- No FPU \& internal baffles
- FPU \& beam former
- FPU configuration IMO v $1.3^{(*)}$
- 49 MFT pixels implemented
- Lenslet pattern by Greg Jaehnig (Apr. 2022)
- V-grooves
- Model based on SHI drawings
- Perfectly reflective panels
- Only three panels of the first layer included
- No other payload/satellite structures (e.g. telescopes envelope, etc.)

Sinuous antenna + lenslet response

- Sinuous antenna coupled to Si-lenslet
- HFSS model "SinuousAntenna LBMF_A_HFSS_20210420 p17_dL10mm_v1_ant4um" by G. Jaehnig
- Converted into GRASP ".cut" format
- Verification after spherical waves expansion by GRASP (constant phi cuts)

Sinuous antenna + lenslet response

- Sinuous antenna coupled to Si-lenslet
- HFSS model "SinuousAntenna LBMF_A_HFSS_20210420 p17_dL10mm_v1_ant4um" by G. Jaehnig
- Converted into GRASP ".cut" format
- Verification after spherical waves expansion by GRASP (uv-grids)

MFT focal plane configuration

- FPU configuration reported in IMo version 1.3
- 7×7 pixels sampled on the focal plane (white circles)
- 001_00X_000_YYY
- 001_00X_004_YYY
- 001_00X_026_YYY
- 001_00X_030_YYY (center pixel of the wafer)
- 001_00X_034_YYY
- 001_00X_056_YYY
- 001_00X_060_YYY
- $\mathrm{X}=$ wafer number, $\mathrm{YYY}=$ frequency
- Di-chroic and tri-chroic channels
- W0 : 119-166GHz
- W1 : 119-166GHz
- W2 : 100-140-195GHz
- W3 : 100-140-195 GHz
- W4 : 100-140-195GHz
- W5 : 119-166 GHz
- W6 : $119-166$ GHz

MFT beams with Physical Optics (PO)

- GRASP ${ }^{\circledR}$ PO simulations of MFT on-axis pixel @140 GHz
- Gaussian pattern vs Sinuous antenna plus lenslet
- Phi $=0$ and phi $=90$ planes at LOS direction
- Beam former \rightarrow aperture stop \rightarrow baffle aperture

Sinuous antenna \& lenslet

MFT beams with Physical Optics (PO)

- Co-polar and cross-polar MFT beams at 100, 119, 140, 166 and 195 GHz

MFT side-lobes with Physical Optics (PO)

- GRASP ${ }^{\circledR}$ PO simulations of MFT on-axis pixel @140 GHz
- 3 front panels of $1^{\text {st }} V$-groove
- $\operatorname{Phi}=0$ and $\mathrm{phi}=90$ planes at LOS direction
- Beam former \rightarrow aperture stop \rightarrow baffle aperture \rightarrow VG1

MFT side-lobes with Physical Optics (PO)

- GRASP ${ }^{\circledR}$ PO simulations of MFT on-axis pixel @140 GHz
- 3 front panels of $1^{\text {st }} \mathrm{V}$-groove
- $\operatorname{Phi}=0$ and phi $=90$ planes at LOS direction
- Beam former \rightarrow aperture stop \rightarrow baffle aperture \rightarrow VG1

- Some notes on the PO approach
- Not feasible for the whole model
- $1^{\text {st }}$ order interactions only at the VG1 front panels
- Reflections
- Diffraction
- At the top and side edges
- Panels bottom is not illuminated
- $2^{\text {nd }}$ order interaction does not converge
- "Back lobes" difficult (impossible?) to be evaluated

MFT side-lobes with Physical Optics (PO)

- Co-polar and cross-polar MFT beams at 100, 119, 140, 166 and 195 GHz

$\begin{gathered} \text { 001_000_000_119 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} 001 \text { _000_000_166 } \\ \text { GHz_co.png } \end{gathered}$	001_000_004_119 GHz_co.png	001_000_004_166 GHz_co.png	$\begin{gathered} 001 \text { _000_026_119 } \\ \text { GHz_co.png } \end{gathered}$	001_000_026_166 GHz_co.png	$\begin{gathered} 001 \text { _000_030_119 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} 001 \text { _000_030_166 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} 001 \text { _000_034_119 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} 001 \text { _000_034_166 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} 001 \text { _000_056_119 } \\ \text { GHz_co.png } \end{gathered}$	001_000_056_166 GHz_co.png	$\begin{gathered} 001 \text { _000_060_119 } \\ \text { GHz_co.png } \end{gathered}$	001_000_060_166 GHz_co.png	$\begin{gathered} \text { 001_001_000_119 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_001_000_166 } \\ \text { GHz_co.png } \end{gathered}$
	I		Q		T		P)	3	V	Q		:	$\underline{\square}$	2	0
001_001_004_119 GHz_co.png	001_001_004_166 GHz_co.png	001_001_026_119 GHz_co.png	001_001_026_166 GHz_co.png	001_001_030_119 GHz_co.png	001_001_030_166 GHz_co.png	001_001_034_119 GHz_co.png	$\begin{gathered} 001 \text { GHz_001_co.pnt_166 } \\ \text { Gng } \end{gathered}$	$\begin{gathered} 001 \text { GHz_001_056_119 } \\ \text { Gng } \end{gathered}$	$\begin{gathered} \text { 001_001_056_166 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_001_060_119 } \\ \text { GHz_co.png } \end{gathered}$	001_001_060_166 GHz_co.png	$\begin{gathered} 001 \text { GHz_002_000_100 } \\ \text { Gng } \end{gathered}$	$\begin{gathered} \text { 001_002_000_140 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_002_000_195 } \\ \text { GHz_co.png } \end{gathered}$	001_002_004_100 GHz_co.png
		$\underline{\square}$	2	U	0	\%\|	\bigcirc	-	S)	:	:	2	E	\bigcirc	
001_002_004_140 GHz_co.png	$\begin{gathered} \text { 001_002_004_195 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_002_026_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_002_026_140 } \\ \text { GHz_co.png } \end{gathered}$	001_002_026_195 GHz_co.png	$\begin{gathered} \text { 001_002_030_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_002_030_140 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_002_030_195 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_002_034_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_002_034_140 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_002_034_195 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_002_056_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_002_056_140 } \\ \text { GHz_co.png } \end{gathered}$	001_002_056_195 GHz_co.png	$\begin{gathered} \text { 001_002_060_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{aligned} & \text { O01_002.060_140 } \\ & \text { GHz_co.png } \end{aligned}$
	IE	1	i)	b)	\|	\%	3 \|	-	-	-	E	F	-	(-)	
001_002_060_195 GHz_co.png	$\begin{gathered} \text { 001_003_000_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_003_000_140 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_003_000_195 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_003_004_100 } \\ \text { GHz_co.png } \end{gathered}$	001_003_004_140 GHz_co.png	$\begin{gathered} 001 \text { GHz_co3_004_195 } \\ \text { GHy } \end{gathered}$	$\begin{gathered} 001 \text { GHz_003_o26_100 } \\ \text { Gng } \end{gathered}$	$\begin{gathered} 001 \text { GHz_003_026_140 } \\ \text { Gng } \end{gathered}$	$\begin{gathered} \text { 001_003_026_195 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_003_030_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_003_030_140 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_003_030_195 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_003_034_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} 001 \text { GHz_003_034_140 } \\ \text { Gng } \end{gathered}$	001_003_034_195 GHz_co.png
	-	F	\bigcirc	2))	(0)	2	S	9)		3		(2)	(2)	0
001_003_056_100 GHz_co.png	$\begin{gathered} \text { 001_003_056_140 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_003_056_195 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_003_060_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_003_060_140 } \\ \text { GHz_co.png } \end{gathered}$	001_003_060_195 GHz_co.png	$\begin{gathered} \text { 001_004_000_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_004_000_140 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_004_000_195 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_004_004_100 } \\ \text { GHz_co.png } \end{gathered}$	001_004_004_140 GHz_co.png	001_004_004_195 GHz_co.png	$\begin{gathered} \text { 001_004_026_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} 001 \text { CO04_026_140 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_004_026_195 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_004_030_100 } \\ \text { GHz_co.png } \end{gathered}$
	:	\%	:		\%	\%	2)	[0	:	:		2-	\%	92	
001_004_030_140 GHz_co.png	001_004_030_195 GHz_co.png	001_004_034_100 GHz_co.png	$\begin{gathered} \text { 001_004_034_140 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_004_034_195 } \\ \text { GHz_co.png } \end{gathered}$	001_004_056_100 GHz_co.png	$\begin{gathered} 001 \text { GHz_coos_o56_140 } \\ \text { Gng } \end{gathered}$	$\begin{gathered} \text { 001_004_056_195 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_004_060_100 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} \text { 001_004_060_140 } \\ \text { GHz_co.png } \end{gathered}$	001_004_060_195 GHz_co.png	$\begin{gathered} \text { 001_005_000_119 } \\ \text { GHz_co.png } \end{gathered}$	$\begin{gathered} 001 \text { GHz_005_000_166 } \\ \text { Go.png } \end{gathered}$	001_005_004_119 GHz_co.png	$\begin{gathered} 001 \text { GHz_005_004_166 } \\ \text { GHy } \end{gathered}$	001_005_026_119 GHz_co.png
		$3 \times$:	2)	:	2	- 0	\because	:	21		9)	E	(6)	
001_005_026_166 GHz co.pnq	$\begin{gathered} 001 _005 _030119 \\ \mathrm{GHz} \text { co.pna } \end{gathered}$	$\begin{gathered} 001 \text { _005_030_166 } \\ \text { GHz co.pnq } \end{gathered}$	$\begin{gathered} 001 \text { _005_034_119 } \\ \text { GHz co.pnq } \end{gathered}$	$\begin{gathered} 001 \text { _005_034_166 } \\ \text { GHz co.pnq } \end{gathered}$	$\begin{gathered} 001 \text { _005_056_119 } \\ \text { GHz co.pnq } \end{gathered}$	$\begin{gathered} 001 \text { _005_056_166 } \\ \text { GHz co.pna } \end{gathered}$	$\begin{gathered} 001 _005 _0600^{119} \\ \mathrm{GHz} \text { co.pna } \end{gathered}$	001_005_060_166 GHz co.pna	001_006_000_119 GHz co.pnq	001_006_000_166 GHz co.pna	001_006_004_119 GHz co.pna	001_006_004_166 GHz co.pna	001_006_026_119 GHz co.pna	$\begin{gathered} 001 \text { _006_026_166 } \\ \text { GHz co.pnq } \end{gathered}$	201_006_030_119 GHz co.pnq

Next steps

- Improve the MFT realistic model
- Include the forebaffle with "trumpet-shaped" aperture edge
- Include tube, baffles, etc.
- Include small and large structures
- Repeat MFT optics simulations with MoM and GTD
!!! Simulation time strongly limits this activity !!!
- Implementation of HFT model \& optical simulations
- Far sidelobes simulations for a subset of pixels (in progress)
!!! Simulation time strongly limits this activity !!!

Simulation time vs frequency (HFT w/o V-grooves)

From beam profiles to instrument requirements

Motivation

- find a simple and direct way to derive beam requirements:
- closer to actual beam measurement procedure
- directly related to actual beam properties specified by, e.g., power dB level
- avoid complications due to full data processing: clearly isolate the actual impact of beam shape only

Proposed approach

- Assume that we recover the input CMB B spectrum but for cosmic variance (CV)
- No component separations, no instrumental noise
- Use sidelobe convolved galactic signal as residual contamination
- Compare CMB B spectrum + galactic signal w.r.t. CV (we cannot beat cosmic variance!)
- visual inspection of contaminating signal
- construct likelihood for r to evaluate its impact in terms of Δr
- Useful to evaluate the goodness of polarised beam approximation in convolution with/without HWP
- III:used in PTEP (the same I beam used also for \mathbf{Q} and \mathbf{U} components)
- IPP: combine Q and U beam to create a "polarised" beam ($\left.P^{2}=Q^{2}+U^{2}\right)$
- TEB: from beam alm: use alm ${ }^{T}$ for total intensity and create $a l m^{P}$ as linear combination of $a l m^{E}$ and alm ${ }^{B}$ for convolution of the polarised signal
- NO-HWP: use Planck totalconvolver with beam as produced by GRASP (this is the actual beam shape)

Preliminary results (PTEP) @ MFT 100/140/195

- No III/TEB convolution @195
- III and IPP very similar: both 5 and 10 degs cuts are larger than CV
- TEB and No-HWP very similar with only 5deg cuts showing smaller excess over CV

Preliminary results: rlikelihood

Impliment a simple r likelihood (no noise, CV and residual galactic sidelobes signal as contaminant)

- III and IPP cannot go lower than 5 $10-5$ very similar: both 5 and 10 degs cuts are larger than CV
- TEB: near sidelobes are more important than far sidelobes
- No-HWP (actual beam shape):
- $\quad 140$ \& 195: beam knowledge down to 5 degs is enough to reach rerror budget and.
- ... this is true @100 with knowledge between 5 and 10 degs

Next steps

- Use latests beams from Cristian: on-going already produce beam alm
- Consider 3 cases:
- central beams in the central Wafer (for trichroic 100/140/195)
- use larger off-axis beams
- use all beams combined
- Cut the beam not in angle but according to its own power level (should be closer to actual beam measurements)
- We are in touch with Clement and provide him with our No-HWP beam convolver maps to derive his own beam requirements and compare with our simple approach. This should be the basis for moving from L3 to L4 requirements.

