

RICAP @Rome, Italy September, 2024

Galactic Center Observations with CTAO LST-1

Shotaro Abe / 阿部正太郎 Ph.D student at ICRR, UTokyo <u>shotaro@icrr.u-tokyo.ac.jp</u> Shotaro Abe^{a)}, Abhishek^{b)}, Michele Doro^{c)}, Tomohiro Inada^{a)}, Marcel Strzys^{a)}, Masahiro Teshima^{a,d)}, and Ievgen Vovk^{a)} for the CTAO LST Project. a) ICRR, UTokyo, b) Univ. Siena & INFN Pisa, c) Univ. & INFN Padova, d) MPP

Introduction

Galactic Center: a vital TeV gamma-ray target

Morphological/spectral studies of the Galactic Center play an essential role in understanding cosmic-ray acceleration and dark matter.

Sky map indicating sources and diffuse emissions *fig:* <u>HESS, Nature 531, 2016</u>

+00.6+00.4**Galactic latitude (degrees)** +00.2 +00.0 -00.2 -00.4 PacMan -00.6 01.0 00.5 00.0 359.5 359.0 Galactic longitude (degrees)

Expected high J-factor with dense DM density *fig:* <u>Pieri et al., PRD 83 023518, 2011</u>

PeVatron Scenario

<u>HESS 2016</u> (followed by <u>HESS 2018</u> & <u>VERITAS 2021</u>) obtained a power-law spectrum and a 1/r CR profile, suggesting the presence of a PeVatron.

Disparities: Hints for the Spectral Curvature

However, <u>MAGIC 2020</u> suggested a 2σ -hist for a spectral cut-off in the diffuse component; and <u>HAWC 2024</u> reported a softer spectrum.

The Next-Generation Gamma-Ray Observatory

Cherenkov Telescope Array Observatory

image: https://www.flickr.com/photos/ctao-universe/3283505673

Rendered Image of the CTAO North Site @ La Palma, Spain (28° N, 17° W)

MAGIC (17 mφ)

MST (11.5/9.7 mφ) LST (23 mφ)

The First Large-Sized Telescope

LST-1

- inaugurated in 2018 - taking scientific data in parallel with our commissioning

d we are building more o: LST-3 Dish Lifted (June 2024)

Large Zenith Angle Observation

= 62.2 deg. Az = 156.8 deg

 10^{0}

10¹

True Energy [TeV]

10²

0.00 10^{-1}

LST-1 requires the large-zenith-angle technique to observe the Galactic Center, leading to the enhanced collection area in the TeV regime.

- +) decreased image leakage (better reconstruction) at higher energy
- -) performance very sensitive to Zd even within the field of view
- -) increased energy threshold from O(10) GeV to O(100) GeV or higher

LST-1: for TeV observations of extended sources

The large-zenith-angle observations enhance the sensitivity at TeVs. The wide field of view is preferable to observe sources spanning >1 deg.

Current Status of the Ridge Diffuse Component

Findings that the current-generation telescopes reported are not completely consistent with each other.

	HESS (2016, 2018)	MAGIC (2020)	VERITAS (2021)	LST-1 (This Study)
Pac Man	Power Law	Not Reported	Not Reported	
total ridge	Power Law	Cut-off at 20 TeV	Power Law	2
CR longitudinal profile	alpha = 1.10 ± 0.12 2D approach	0.9 < alpha < 1.4 3D approach	Not Reported	•
Zenith Angle	Low Zd	Large Zd	Large Zd	Large Zd
Field of View	5.0 deg	3.5 deg	3.5 deg	4.5 deg

This study is trying to provide a new view towards this situation.

Galactic Center Studies with CTAO LST-1

Data & MCs

39 hours of good-quality data were collected with LST-1. The MC simulations were performed along the Galactic Center trajectory.

- Observation
 - **<u>39-hour data</u>** in 2021/2022 after selections
 - wobble offset: 0.5 deg or 0.7 deg
- MC
 - covers the field of view of LST-1
 across the Galactic Center trajectory
- Reconstruction & Instrument Response Evaluation
 - evaluated telescope responses on a <u>run-by-run</u> / node-by-node basis

Background Estimation & 3D Analysis

Based on our development of pybkgmodel, a background-estimation tool, we performed a spatially-resolved spectral fit with gammapy.

- <u>Background Modeling</u>: the stacked exclusion-map method
 - modeled by events outside the masks below, similar to <u>MAGIC (2020)</u>.
 - cf. <u>HESS (2016, 2018)</u> mainly used the reflected-region background.
- <u>Signals</u>: forward-folding with predefined spectral/spatial models

Result: Clear & Wide View of LST-1

13

Result: Clear & Wide View of LST-1

*Significance in this study: >400 GeV **cf. <u>MAGIC 2020</u> (100hr, >1 TeV): Sgr A*: 48σ, G0901: 11σ, Arc: 6.4σ, Diffuse: 17σ.

14

Method: the Ridge Diffuse Emission Morphology

The diffuse γ -rays are modeled as resulting from inelastic *p*-*p* interaction between the dense gas and cosmic rays propagating from Sgr A*.

Result: Longitudinal Profile

The longitudinal profile obtained in -0.3° < b < 0.3° demonstrates the current set of models generally describes data well.

Result: CR Radial Profile

The cosmic-ray profile along the Galactic longitude has a peak structure, consistent with <u>HESS 2016</u>.

Result: SEDs of Point-like Sources

LST-1 results are generally consistent with the prior studies. A cutoff has not been seen in G0.9+0.1, despite the 4.8 cutoff significance for Sgr A*.

Result: Ridge Diffuse Emission

The total diffuse emission favors the cut-off at 29 TeV with a significance of 2.8σ, consistent with <u>MAGIC 2020</u>.

Conclusion & Summary

Summary

This study provides a new TeV view towards the Galactic Center region.

- <u>The LST prototype has proven to work well</u> for TeV observations of the Galactic Center region.
 - large-zenith-angle observations: Zd > 58 deg
 - wide field of view: the flat sensitivity up to 1.5 deg
- <u>3D Analysis was performed with 39-hr data</u>
 - higher significance of the ridge diffuse component & G0.9+0.1 than <u>MAGIC 2020</u> with less than half the observation time
- <u>Spatial/Spectral distributions are generally</u> <u>aligned with previous studies</u>
 - the diffuse morphology aligns with the constant CR diffusion from Sgr A*
 - Ridge diffuse: cutoff around 30 TeV (2.8σ hint), consistent with MAGIC 2020

Back Up