BULLKID-DM: searching for light WIMP with monolithic arrays of detectors

RICAP – Rome, 24/09/2024

Daniele Delicato on behalf of the collaboration

Motivation: Dark Matter direct search

Spin-independent WIMP on nucleon scattering cross section limits for direct detection experiments

Kg-scale solid state phonon detectors

Detection Principle

State of the art

Background issue in low-T experiments

Not understood excess background rising at low energies

- Phonon bursts (crystal-support friction) ?
- Lattice relaxations after cool down?
- Phonon leakage from interactions in the supports?

Excess workshop 2024 Roma, 6 July https://agenda.infn.it/event/39007/

This background limits the sensitivity of present experiments

Large mass: phonons and multiplexing

Phonon mediation

Detect phonons created by nuclear recoils in a silicon die

Total active mass is 20g

Diced silicon absorber

KID array on the other side of the wafer hosting 60 resonators (60 nm Al)

Kinetic Inductance Detectors (KIDs)

Data analysis: phonon leakage

- Only 50% of the phonons generated are absorbed by the KID
- The rest leaks in nearby voxels
 - (8 ± 2) % in each "+" die
 - (3 ± 1) % in each "x" die
 - the rest in outer dice

This effect reduces the phonon focusing on the KID but is **exploited to identify the interaction voxel**

Background: pulse shape + phonon cuts

Background: result on surface @Sapienza U., no shield, 39 live hours

D. Delicato et al, Eur. Phys. J. C 84 (2024) 353

10

Threshold and mass

Threshold (ongoing R&Ds):

- 1. Replace Al with Al-Ti-Al KIDs: 5x inductance
- 2. Deeper carvings for higher phonon focussing

Prototype - 20 g / 60 dice

single 3" wafer concluded in 2023

Demonstrator - 60 g / 180 dice

3-layer stack of 3" wafers operations ongoing

R&D on large wafer 50 g / 145 dice

single 100 mm wafer first operations fall 2024

BULLKID-DM - 800 g / 2300 dice

16-layer stack of 100 mm wafers commissioning in 2026 at Sapienza U. Fiducial mass: 600g

BULLKID-DM Collaboration

VEEL

BULLKID-DM Conceptual Design Report (CDR)

L. Ardila-Perez¹, P. Azzurri², L. Bandiera³, M. Calvo⁴, M. Cappelli^{8,6}, R. Caravita⁵, F. Carillo², U. Chowdhury⁴, A. Cruciani⁶, A. D'Addabbo⁷, D. Delicato^{4,8,6}, G. Del Castello^{8,6}, M. del Gallo Roccagiovine^{8,6}, M. de Lucia^{9,2}, F. Ferraro⁷, M. Folcarelli^{8,6}, R. Gartmann¹, M. Grassi²,
V. Guidi^{10,3}, T. Lari^{9,2}, L. Malagutti³, A. Mazzolari^{10,3}, A. Monfardini⁴, T. Muscheid¹, D. Nicolo^{9,2}, F. Paolucci², D. Pasciuto⁶, V. Pettinacci⁶, C. Puglia², C. Roda^{9,2}, S. Roddaro², M. Romagnoni³, O. Sander¹, G. Signorelli^{9,2}, F. Simon¹, M. Tamisari^{11,3}, A. Tartari², E. Vázquez-Jáuregui¹², and M. Vignati^{8,6}

> ¹Karlsruhe Institute of Technology (KIT), Institute for Data Processing and Electronics (IPE), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
> ²INFN - Sezione di Pisa Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
> ³INFN - Sezione di Pisa Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
> ⁴Univ. Grenoble Alpes, CNRS, Grenoble INP Institut Néel, 38000 Grenoble, France
> ⁵INFN - TIFA Via Sommarive 14, 38123 Poro (Tenuo), Italy
> ⁶INFN - Sezione di Roma Piazzale Aldo Moro 2, 00185, Roma, Italy
> ⁷INFN - Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy
> ⁸Diparrimento di Fisica, Università di Roma, Piazzale Aldo Moro 2, 00185, Roma, Italy
> ⁹Diparrimento di Fisica, Università di Roma, Piazzale Aldo Moro 2, 00185, Roma, Italy
> ⁹Diparrimento di Fisica e Scienze della Terra, c Via Saragat 1, 44100, Ferrara, Italy
> ¹¹Diparimento di Fisica e scienze della Terra, c Via Saragat 1, 44100, Ferrara, Italy
> ¹²Instituto de Fisica, Universidad Nacional Autónoma de México, A.P. 20-364, Ciudad de México
> ¹²Instituto de Fisica, Universidad Nacional Autónoma de México,

> > June 28, 2024

Dark Matter - direct search with BULLKID-DM

	BULLKID prototype	BULLKID-DM demonstrator		BULLKID-DM	
mass	20 g	60 g		800 g	
# of sensors	60	180		2300	
threshold	160 eV	200 eV		≤ 200 eV	
bkg (c/keV kg d)	2x10 ⁶	< 105		1 - 0.01	
laboratory	Sapienza U.	Sapienza	LNGS	LNGS	
installation	2023	2024	2026	2027	

Exposure: 1Yr x 600g of fiducial mass

LNGS Cryogenic facility

BULLKID-DM intends to be a user of the new facility in Hall B Additional shielding might be required

Ordered Oxford Proteox fits the needs

d Replaceable insert to be eds instrumented with RF lines

Simulations: shields and veto

Wrap up

- ✓ 800 g of silicon target
- ✓ 2300 detector units (dice)

Unique features for bkg. suppression:

- ✓ No inert material in detector volume
- ✓ fully active
- ✓ fiducialization (600 g)
 Will it help with the unknown backgrounds?

DM

10¹

Prototype works	demonstrator (3 wafer)		demonstrator at LNGS	full detector at Sapienza	installation at LNGS	
2023	2024	2025	2	2026	2027	
LoI to INFN and LNGS	CDR submitted to INFN			TDR		16

Simulations: shields and veto

✓ preliminary

Currently working on internal contaminations in lead and veto

muons, gammas and neutrons from: Astropart. Phys. 33 (2010) 169, Phys. Rev. D 73 (2006) 053004, Eur. Phys. J. A 41 (2009) 155, Astropart. Phys. 22 (2004) 313.

RF Electronics

Current electronics (Ettus x310): **30 KIDs / board**

New electronics (ZCU216 Evaluation Board with 16 lines): Goal >= 150 KIDs / line

- Custom Analog Front-End and
- Control Firmware by the KIT group
- Status: first tests on BULLKIDprototype

Towards the experiment

Underground cryo-infrastructure

Dilution refrigerator with T < 80 mK Cryostat outer shielding (PE, Pb, ...) Inner shielding Outer muon veto ~20 RF lines

MC Simulations

Design of the apparatus Definition of required radiopurity

Inner veto or shield

Cryo-veto around the BULLKIDs (BGO/GSO + Light detector) or lead passive shield?

CONNAE

stack of wafers

µ veto Lead Polyethylene Copper Cryo veto or shield T < 80 mK

Energy calibration options. - IR light

- neutron recoils (a là CRAB)
- ¹³⁷Cs or ⁶⁰Co Compton
- asynchronous

RF Readout and DAQ SDR boards onboard trigger

Computing Data transfer Data storage

Data analysis 2000+ channels, cluster analysis

Cryogenic veto: BGO prototype

CALDER KID Light detector

BGO Crystal

Assembly with reflector

Goal: energy threshold < 50 keV

Status of the 3-wafer stack

2-wafer stack operated. No issues observed

3-wafer stack assembled

Status of the 3-wafer stack

- Holding structure: thermalization and mounting
- Reproducibility of the **electrical coupling**
- Reproduce the results of the unstacked wafers

Status of the 3-wafer stack

Stacked configuration with the 250 Kg lead castle shielding

Scalability for the 100mm mask: thick wafer

- From 3" to 4":
- 145 pixels
- 49.3g of active silicon per wafer
- Diced prototype will be tested soon

Sensitivity plots

Motivation: Coherent elastic neutrino nucleus scattering (CEvNS)

$$\sigma_{CEvNS} = \frac{G_F}{4\pi} E_{\nu}^2 Q_W^2 F(q^2)$$

$$\sigma_{CEvNS} \leq 10^{-40} \text{ cm}^2$$
Neutrino Energy
$$E_{\nu} \approx O(\text{few MeVs})$$

$$Meak \text{ Force Charge}$$

$$Q_W = N - P(1 - 4\sin^2\theta_W) \approx N$$

$$Muclear \text{ Form Factor}$$

$$F(q) = \frac{1}{Q_W} \int_0^{R_N} \rho_W(r) \frac{\sin(qr)}{qr} dr$$

$$\rho_W(r) = \rho_N(r) - (1 - 4\sin^2(\theta_W))\rho_P(r)$$
Fourier transform of the nucleon distribution
$$Muclear \text{ Form Factor}$$

$$F(q) = \frac{1}{Q_W} \int_0^{R_N} \rho_W(r) \frac{\sin(qr)}{qr} dr$$

$$\rho_W(r) = \rho_N(r) - (1 - 4\sin^2(\theta_W))\rho_P(r)$$
Fourier transform of the nucleon distribution
$$Muclear \text{ Form Factor}$$

$$F(q) = \frac{1}{Q_W} \int_0^{R_N} \rho_W(r) \frac{\sin(qr)}{qr} dr$$

$$\rho_W(r) = \rho_N(r) - (1 - 4\sin^2(\theta_W))\rho_P(r)$$
Fourier transform of the nucleon distribution
$$Muclear \text{ Form Factor}$$

$$F(q) = \frac{1}{Q_W} \int_0^{R_N} \rho_W(r) \frac{\sin(qr)}{qr} dr$$

$$\rho_W(r) = \rho_N(r) - (1 - 4\sin^2(\theta_W))\rho_P(r)$$
Fourier transform of the nucleon distribution
$$Muclear \text{ Form Factor}$$

$$F(q) = \frac{1}{Q_W} \int_0^{R_N} \rho_W(r) \frac{\sin(qr)}{qr} dr$$

$$\rho_W(r) = \rho_N(r) - (1 - 4\sin^2(\theta_W))\rho_P(r)$$
Fourier transform of the nucleon distribution
$$Muclear \text{ Form Factor}$$

$$F(q) = \frac{1}{Q_W} \int_0^{R_N} \rho_W(r) \frac{\sin(qr)}{qr} dr$$

$$P(r) = \frac{1}{Q_W} \int_0^{R_N} \rho_W(r) \frac$$