Heritage and challenges for next-generation charged cosmic-ray space missions

Nicola Mori Istituto Nazionale di Fisica Nucleare Sezione di Firenze (co-authors M. Duranti, R. Iuppa, L. Pacini and V. Vagelli)

Cosmic Rays

Charged CRs: state of the art & challenges

In general the goal is to:

- measure the nuclear composition of CR in the 100 TeV PeV energies for a comprehensive assessment of CR origin, acceleration and transport mechanisms;
- measure CR electron anisotropies and flux beyond 10 TeV (search for nearby astrophysical electron sources);
- extend measurements of isotopic composition of CRs above 10 GeV/n (determination of halo size, high energy interactions, ...);
- measure the composition of ultra-heavy trans-Iron CR (association of neutron-rich CR sources, ..);
- search for new physics signatures in CR measurements:
 - new physics signatures in low-energy nuclear antimatter fluxes (e.g., anti-D, anti-He);
 - new physics signatures in high-energy antiprotons and positron/electron fluxes;
 - measurement of secondary positrons above the TeV break;
 - search for exotica or Beyond-Standard-Model physics.

The experimental challenge

No atmosphere:

- Stratospheric ballon
- Satellite / Space stations / Moon (?)

Limits on size / weight / time / power consumption

With a detector design focused on specific measurements, is "easy" to optimize and cope with the limitations

Antimatter / Isotopes Magnetic spectrometers Nuclei / e^++e^- / γ Calorimeters When going for a general purpose detector, this is much more complicated...

24/9/2024

Current experiments – key concepts and detectors (AMS, CALET and DAMPE used as examples)

How to identify&measure

- Measure energy/momentum:
 - calorimetry
 - magnetic spectrometry
 - time of flight
 - Cherenkov
 - transition radiation
- Measure sign of charge:
 - magnetic spectrometry + time of flight
 - topology of annihilation (tracking/calorimetry)
- Measure charge:
 - dE/dx (tracking/scintillation)
 - number of photons in Cherenkov radiation

- Measure mass (β/γ + E/p):
 - time of flight
 - Cherenkov
 - transition radiation
- Hadron/lepton separation:
 - transition radiation
 - shower development topology (imaging calorimetry)
 - energy/momentum match
 - neutron produced in hadronic shower (neutron detector)
 - calorimeter back-scattering timing measurement ?

Redundancy is the key to accuracy and reliability

Current operating experiments – AMS-02

24/9/2024

Current operating experiments - CALET

On ISS since August 2015

CHD: double layer of scintillating bars detector acting as charge measurement, offline veto for photons, and HN trigger

IMC: 8 layers of X-Y scintillating fibers + 7 tungsten layers (3 X₀), used as tracker, preshower, photon converter, and trigger, with charge identification capabilities

TASC: homogeneous e.m. calorimeter made of 12 layers of PWO bars (27 X_0), for energy measurement, e/p separation and trigger

Current operating experiments - DAMPE

PSD: double layer of scintillating strip detector acting as ACD (anti-counter) + charge measurement

In orbit since 17 December 2015

BGO: the calorimeter is made of 308 BGO bars in hodoscopic arrangement (~31 X_0). Performs energy measurements, hadron/lepton identification (*e/p rejection*), and trigger STK: 6 tracking double layer + 3 mm tungsten plates. Used for particle track, charge measurement and photon conversion $(\sim 2 X_0)$

NUD: it's complementary to the BGO e/p rejection, by measuring the thermal neutron shower activity. Made up of boron-doped plastic scintillator

24/9/2024

Key concepts/detectors

24/9/2024

Shower development topology: segmentation (longitudinal and lateral)

Key concepts/detectors

24/9/2024

Control of fragmentation inside the detector

→ measure the charge "as TOI as possible"

Key concepts/detectors

<u>β measurement:</u>

- identify the different isotopes (d/p, ³He/⁴He, ⁷Li/⁶Li, ¹⁰Be/⁹Be, ²⁷Al/²⁶Al, ...)
- control the quality of the momemtum/energy measurement (e.g. check on the mass)

Techniques:

- Time of Flight (ToF)
- Cherenkov (ring or threshold)
- Transition Radiation (measuring γ)

24/9/2024

Nicola Mori

TOF

IOF RICH

Key concepts/detectors

Charge sign measurement:

matter/anti-matter

Silicon Tracker

Z, P

The intensity of the magnetic field (B), the lever arm (L) and the spatial resolution (σ_x) determine the momentum resolution (δp) and the detector Maximum Detectable Rigidity, MDR ($\delta p/p=1$):

MDR \propto B L² / σ_x

Alternantes Top Top Z, E

Techniques:

• Spectrometry + ToF

24/9/2024

Nicola Mori

TOF

► 3-4

▶ 5-6

7-8

Current operating experiments (end 2024)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES...

Future/proposed 4π experiments

- HERD
- ALADInO
- AMS-100
- balloon?

Current operating "telescopes"

All the current and past detectors are designed as 'telescopes': they're sensitive only to particles impinging from "the top" limited FoV → small acceptance

24/9/2024

New paradigma - CaloCube

- Exploit the CR "isotropy" to maximize the effective geometrical factor, by using all the surface of the detector (aiming to reach $\Omega = 4\pi$)
- The calorimeter should be highly isotropic and homogeneous:
 - the needed <u>depth</u> of the calorimeter must be guaranteed for all the sides (i.e. cube, sphere, ...)
 - the <u>segmentation</u> of the calorimeter should be isotropic
 - → this is in general doable just with an homogeneous calorimeter

<u>CaloCube is an INFN R&D initiated in Florence (Adriani et al.), almost</u> <u>always inspiring the next generation of large space cosmic rays detectors</u>

HERD detector

Item	Value
Energy range (e/γ)	10 GeV - 100 TeV (e); 0.5 GeV- 100 TeV (γ)
Energy range (nuclei)	30 GeV - 3 PeV
Angular resolution	0.1 deg.@10 GeV
Charge resolution	0.1-0.15 c.u
Energy resolution (e)	1-1.5%@200 GeV
Energy resolution (p)	20-30%@100 GeV - PeV
e/p separation	~10 ⁻⁶
G.F. (e)	>3 m²sr@200 GeV
G.F. (p)	>2 m²sr@100 TeV
Field of View	~ 6 sr
Envelope (L*W*H)	~ 2300*2300*2000 mm ³
Weight	~ 4000 kg
Power Consumption	~ 1400 W

Operative from 2027 on the CSS

24/9/2024

"Future CR detection in space"

AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2

S. Schael ^a ≈ ⊠, A. Atanasyan ^b, J. Berdugo ^c, T. Bretz ^d, M. Czupalla ^e, B. Dachwald ^e, P. von Doetinchem ^f, M. Duranti ^g, H. Gast ^a ≈, W. Karpinski ^a, T. Kirn ^a, K. Lübelsmeyer ^a, C. Maña ^c, P.S. Marrocchesi ^h, P. Mertsch ⁱ, I.V. Moskalenko ^j, T. Schervan ^k, M. Schluse ^b ... J. Zimmermann ^k

Open Access Feature Paper Article

Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO)

by & Oscar Adriani ^{1,2} \boxtimes , & Corrado Altomare ³ \boxtimes , & Giovanni Ambrosi ⁴ \boxtimes , Philipp Azzarello ⁵ , & Felicia Carla Tiziana Barbato ^{6,7} \boxtimes , & Roberto Battiston ^{8,9} \boxtimes , & Bertrand Baudouy ¹⁰ \boxtimes , & Benedikt Bergmann ¹¹ \boxtimes , & Eugenio Berti ^{1,2} \boxtimes , & Bruna Bertucci ^{12,4} \boxtimes , & Mirko Boezio ^{13,14} \boxtimes , & Valter Bonvicini ¹³ \boxtimes , & Sergio Bottai ² \boxtimes , & Petr Burian ¹¹ \boxtimes , & Mario Buscemi ^{15,16} \boxtimes , & Franck Cadoux ⁵ \boxtimes , & Valerio Calvelli ^{17,†} \boxtimes , & Donatella Campana ¹⁸ \boxtimes , & Jorge Casaus ¹⁹ \boxtimes , & Andrea Contin ^{20,21} \boxtimes , + Show full author list

https://doi.org/10.3390/instruments6020019

https://doi.org/10.1016/j.nima.2019.162561

24/9/2024

Current operating experiments (end 2024)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES...

Current operating experiments (2032)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES...

Current operating experiments (2060)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES...

Current operating experiments (2060)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES...

Current operating experiments (2032)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES...

What we need?

24/9/2024

What we need?

24/9/2024

Stay tuned...