Heritage and challenges for next-generation charged cosmic-ray space missions

Nicola Mori Istituto Nazionale di Fisica Nucleare Sezione di Firenze (co-authors M. Duranti, R. Iuppa, L. Pacini and V. Vagelli)

Cosmic Rays

Charged CRs: state of the art & challenges

In general the goal is to:

- measure the nuclear composition of CR in the 100 TeV PeV energies for a comprehensive assessment of CR origin, acceleration and transport mechanisms;
- measure CR electron anisotropies and flux beyond 10 TeV (search for nearby astrophysical electron sources);
- extend measurements of isotopic composition of CRs above 10 GeV/n (determination of halo size, high energy interactions, …);
- measure the composition of ultra-heavy trans-Iron CR (association of neutron-rich CR sources, ..);
- search for new physics signatures in CR measurements:
	- new physics signatures in low-energy nuclear antimatter fluxes (e.g., anti-D, anti-He);
	- new physics signatures in high-energy antiprotons and positron/electron fluxes;
	- measurement of secondary positrons above the TeV break;
	- search for exotica or Beyond-Standard-Model physics.

The experimental challenge

No atmosphere:

- Stratospheric ballon
- Satellite / Space stations / Moon (?)

 Limits on size / weight / time / power consumption

With a detector design focused on specific measurements, is "easy" to optimize and cope with the limitations

Antimatter / Isotopes Magnetic spectrometers Nuclei / e^+e^- / ν **Calorimeters** When going for a general purpose detector, this is much more complicated…

Current experiments – key concepts and detectors (AMS, CALET and DAMPE used as examples)

How to identify&measure

- Measure energy/momentum:
	- calorimetry
	- magnetic spectrometry
	- time of flight
	- Cherenkov
	- transition radiation
- Measure sign of charge:
	- magnetic spectrometry + time of flight
	- topology of annihilation (tracking/calorimetry)
- Measure charge:
	- dE/dx (tracking/scintillation)
	- number of photons in Cherenkov radiation
- Measure mass ($β/γ + E/p$):
	- time of flight
	- Cherenkov
	- transition radiation
- Hadron/lepton separation:
	- transition radiation
	- shower development topology (imaging calorimetry)
	- energy/momentum match
	- neutron produced in hadronic shower (neutron detector)
	- calorimeter back-scattering timing measurement ?

Redundancy is the key to accuracy and reliability

Current operating experiments – AMS-02

Current operating experiments - CALET

On ISS since August 2015

CHD: double layer of scintillating bars detector acting as charge measurement, offline veto for photons, and HN trigger

IMC: 8 layers of X-Y scintillating fibers $+ 7$ tungsten layers $(3 X₀)$, used as tracker, preshower, photon converter, and trigger, with charge identification capabilities

TASC: homogeneous e.m. calorimeter made of 12 layers of PWO bars (27 X₀), for energy measurement, e/p separation and trigger

Current operating experiments - DAMPE

 Ω

Y

PSD: double layer of scintillating strip detector acting as ACD (anti-counter) + charge measurement

In orbit since 17 December 2015

BGO: the calorimeter is made of 308 BGO bars in hodoscopic arrangement (~31 X_0). Performs energy measurements, hadron/lepton identification (*e/p rejection*), and trigger

STK: 6 tracking double layer + 3 mm tungsten plates. Used for particle track, charge measurement and photon conversion $(-2 \times_0)$

NUD: it's complementary to the BGO e/p rejection, by measuring the thermal neutron shower activity. Made up of boron-doped plastic scintillator

Key concepts/detectors

Shower development topology: segmentation (longitudinal and lateral)

Key concepts/detectors

Control of fragmentation inside the detector

 \rightarrow measure the charge "as TOI as possible"

Key concepts/detectors

β measurement:

- identify the different isotopes (d/p, ³He/⁴He, ⁷Li/⁶Li, ¹⁰Be/⁹Be, 27 Al/²⁶Al, ...)
- control the quality of the momemtum/energy measurement (e.g. check on the mass)

Techniques:

- Time of Flight (ToF)
- Cherenkov (ring or threshold)
- **Transition Radiation** (measuring γ)

24/9/2024 Nicola Mori 14

TOF **RICH**

TOF

Key concepts/detectors

Charge sign measurement:

• matter/anti-matter

Silicon Tracker

Z, P

The intensity of the magnetic field (B), the lever arm (L) and the spatial resolution ($\sigma_{\sf x}$) determine the momentum resolution (δp) and the detector Maximum Detectable Rigidity, MDR (δp/p=1):

MDR \propto B L² / $\sigma_{\rm x}$

UNHERAP TOF BULGON COLUMN Z, E

Techniques:

• Spectrometry + ToF

24/9/2024 Nicola Mori 15

TOF

 $-3-4$

2

1

 $\boldsymbol{\Theta}$

9

 $-7-8$

 $-5-6$

 $|\vec{e}|$ $\mathsf \circ$ \checkmark $\bf \bar \varpi$

Current operating experiments (end 2024)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES…

Future/proposed 4π experiments

- HERD
- ALADInO
- AMS-100
- balloon?

Current operating "telescopes"

All the current and past detectors are designed as 'telescopes': they're sensitive only to particles impinging from "the top" limited FoV \rightarrow small acceptance

New paradigma - CaloCube

- Exploit the CR "isotropy" to maximize the effective geometrical factor, by using all the surface of the detector (aiming to reach $Ω = 4π$)
- The calorimeter should be highly isotropic and homogeneous:
	- the needed $\frac{depth}{ }$ of the calorimeter must be guaranteed for all the sides (i.e. cube, sphere, …)
	- the segmentation of the calorimeter should be isotropic
	- \rightarrow this is in general doable just with an homogeneous calorimeter

CaloCube is an INFN R&D initiated in Florence (Adriani et al.), almost always inspiring the next generation of large space cosmic rays detectors

HERD detector

Operative from 2027 on the CSS

'' Future CR detection in space ''

AMS-100: The next generation magnetic spectrometer in space - An international science platform for physics and astrophysics at Lagrange point 2

S. Schael ^a & ⁸³, A. Atanasyan ^b, J. Berdugo °, T. Bretz ^d, M. Czupalla °, B. Dachwald °, P. von Doetinchem ^f, M. Duranti ^g, H. Gast ^a A, W. Karpinski ^a, T. Kirn ^a, K. Lübelsmeyer ^a, C. Maña ^c, P.S. Marrocchesi ^h, P. Mertschⁱ, I.V. Moskalenko^j, T. Schervan^k, M. Schluse^b... J. Zimmermann^k

Open Access Feature Paper Article

Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO)

by © Oscar Adriani ^{1,2} [⊠] . © Corrado Altomare ^{3 ⊠} . © Giovanni Ambrosi ^{4 ⊠} . © Philipp Azzarello ^{5 ⊠}, C Felicia Carla Tiziana Barbato 6,7 ⊠ C Roberto Battiston 8,9 ⊠ C Bertrand Baudouy ¹⁰ ⊠ © Benedikt Bergmann ^{11 ⊠} . © Eugenio Berti ^{1,2 ⊠} . © Bruna Bertucci ^{12,4} ⊠ . © Mirko Boezio ^{13,14} ⊠ © A Valter Bonvicini ¹³ [⊠], A Sergio Bottai ^{2 ⊠}, A Petr Burian ^{11 ⊠}, A Mario Buscemi ^{15,16} ⊠, A Franck Cadoux ^{5 ⊠}, Anderio Calvelli^{17,† ⊠}, © Donatella Campana^{18 ⊠ ©}, © Jorge Casaus ^{19 ⊠ ©}, © Andrea Contin^{20,21} ⊠ ©, + Show full author list

<https://doi.org/10.1016/j.nima.2019.162561> <https://doi.org/10.3390/instruments6020019>

Current operating experiments (end 2024)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES…

Current operating experiments (2032)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES…

Current operating experiments (2060)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES…

Current operating experiments (2060)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES…

Current operating experiments (2032)

* focusing on direct "high energy", so not mentioning detectors like CSES-01 & CSES-02 or NUSES…

What we need?

What we need?

Stay tuned...