Into the Neutrino Fog with XENONnT

R. Biondi on behalf of XENON Collaboration

XENON

RICAP 2024 - 24th September 2024

The XENON Collaboration

- 29 Institutions Worldwide
- More than 200 Scientists

Main goal:

Detection of dark matter particles with a liquid xenon TPC

Last Collaboration Meeting March 11-14 2024 in LNGS

Xenon_experiment XENONexperiment **XENONexperiment**

The TPC Detection Principle

The Neutrino Fog

CEvNS: Coherent Elastic Neutrino-Nucleus Scattering

- First measure by COHERENT (2017) from a spallation neutron
- Never measured in a xenon target
- ⁸B CEvNS: Expected to have the largest detectable number of CEvNS events in xenon
- Signature indistinguishable from 5.5 GeV/c² WIMP with spin-independent σ_{si} = 4.4 × 10⁻⁴⁵ cm² nuclear recoil

D. Akimov et al, Science 357 (2017)

Ciaran A. J. O'Hare -Phys. Rev. Lett. 127, 251802

The XENON project at LNGS

Laboratori Nazionali del Gran Sasso – INFN (Hall B)

XENONIT

1400 mt of rock: 3.800 m.w.e.

Muon flux ~ 1 m⁻² h⁻¹

Suppression factor: 10⁶

History and Future of the XENON project

	XENON10	XENON100	XENONIT	XENONnT	DARWIN - XLZD
Period	2005 - 2007	2008 - 2016	2012 - 2018	2019 - 202?	202?
Dimensions	15 x 20 cm	30 x 30 cm	lxlm	1.5 x 1.3 m	2.6 x 2.6 m
Active mass	14 kg	62 kg	2 tons	5.9 tons	40 tons
Sensitivity	~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²

XENONnT

Fast upgrade exploiting the infrastructures from XENONIT

New TPC

- Drift length 1.5 m (XENON1T had 1 m)
- Active Xe mass 5.9 t (2 t)
- Double the number of PMTs to 494
- Light detection efficiency: 36%
- Carefully **selected materials** to minimize background
- Field shaping rings with tunable potential

Commissioned in March 2020 during the lockdown due to COVID pandemic

Neutron Veto

Water Cherenkov detector built around the cryostat with 120 PMTs inside an enclosure of reflective panels

To tag **neutrons events** which contribute to background in WIMP search

Running with pure water: Measured tagging efficiency 68%

Currently operating with Gd salt (500 ppm) with tagging efficiency ${\sim}77\%$

Rn Removal Column

ER background comes mainly from β -decay of ²¹⁴Pb from ²²²Rn accumulating into LXe and GXe

High-flow Radon distillation column: 72 kg/h (200 slpm)

Radon as less volatile noble gas is trapped in the column until it decays (3.8 days)

Performance:

- Pre-SRO No RRS: : 3.4 μBq/kg
- SRO GXe-only: 1.8 µBq/kg
- SR1 GXe + LXe: 0.8 µBq/kg

Liquid Xe Purification System

Direct liquid circulation with cryogenic pump To purify faster the full inventory of LXe

- High flow: 2 liters LXe/min
- Replaceable filter units with low Rn emanation
- Online E-lifetime measurement by purity monitor

Achieved x10 better purity than XENON1T

Electron lifetime > 10 ms in science run

Calibration

Two **ER calibration** sources at low energies:

³⁷Ar: mono-energetic peak at 2.82 keV, validates resolution model and energy reconstruction of peaks.

e-lifetime

²²⁰Rn: its daughter ²¹²Pb provides a flat β -spectrum used to estimate cut acceptances and energy threshold

NR calibration with **AmBe** source:

Corrections and Energy Reconstruction

S1 and S2 signals have to be corrected to take into account **position dependent response** of the detector, this is done via the periodical ^{83m}Kr calibration.

Corrected signals cS1 and cS2 are then used in the analysis

Energy reconstruction:

Using: ³⁷Ar, ^{83m}Kr, ^{131m}Xe, ^{129m}Xe calibration

$$E = 13.7 \text{ eV} \left(\frac{cS1}{g_1} + \frac{cS2}{g_2}\right)$$

Datasets

³⁷Ar

Maintenance & distillation

(S1-only)

²²²Rn

AmBe

SR1

2023.07

2022,10

2023.04

202307

²²⁰Rn

Background

^{83m}Kr ⁸⁸YBe 88Y Exposure: 3.51 ton x yr 350 Stable detector response: <1% (<3%) light (charge) 300 vield variation 250 exposure [days] **XENON** High LXe purity: Electron lifetime ~20ms Regular calibrations: 200 **q1:** 0.1515 ± 0.0014 PE/ph (SR0) 0.1367 ± 0.0010 PE/ph (SR1) SR0 150 g2: 16.45 ± 0.64 PE/e (SR0) 16.85 ± 0.46 PE/e (SR1) Raw 100 160PandaX-4T 50 1402021.10 2022-01 2022.04 2021.07 2022-01 XENON1T Time [YYYY-MM, UTC] 40 XENONnT World leading low ER background in SR0, improved in SR1 20 8.0 10.0 12.5 15.017.5 2.55.0 20.0

Energy [keV_{ce}]

7.5

SR0 and SR1 Science Data (2021-07 - 2023-08)

Into the Neutrino Fog with XENONnT (R. Biondi)

Calibration with YBe Neutron Source

 88 YBe Low Energy NR Calibration with 152 keV neutrons from photo-disintegration of 9 Be by γ -ray from 88 Y decay

1.4

1.2

1.0

Sounts/Bin 9.0

0.4

0.2

2 3

×10²

YBe Best-Fit Sim

5

YBe Data

9

- Low energy NR yield model affects
 ⁸B CEvNS detection efficiency
- Good simulation/data match
- Light/charge yield model constrained by ⁸⁸YBe data
- Yield model uncertainty leads to ~34% signal rate uncertainty

Energy Threshold and Region of Interest

- Lowered S1(S2) threshold from conventional WIMP search analysis: 3 hits (200 PE)
- Relaxed S1 waveform shape requirement
- Lower S2 threshold is used to reject high isolated S2 background below it.

~x17 more Events Expected

Accidental Coincidence Background

Random unphysical pairing of isolated S1 and S2

Isolated peaks are side products of **high energy interactions** (Physical mechanisms still under investigation)Isolated-S1(S2) Rate 15 Hz(150 mHz)

Suppression:

- Selection on space/time correlation to previous HE interactions (TimeShadow)
- Boosted Decision Tree selections:
 - SI BDT: VUV photon spectrum + SI pulse shape & spectrum
 - S2 BDT: S2 pulse shape compatible with diffusion law
- 3⁴-bins 4D search space (cS2, S1 BDT, S2 BDT, TimeShadow)

Model Validated by **AC sideband** (events that failed S2 BDT)Fit and by ³⁷Ar L-shell 0.27 keV ER calibration

Expected # of AC events: 7.5 ± 0.7 for SR0 & 17.8 ± 1.0 for SR1

Other Backgrounds

Radiogenic Neutrons: spontaneous fission and (α,n) reactions

- Modeled in a combination of data-driven approach and MC
- Neutron background prediction:
 - SR0: 0.13±0.07 Events
 - SR1: 0.33±0.19 Events

Electronic Recoils:

Phys.Rev.Lett. 129 (2022) 16, 161805

mainly β -decays from ²¹⁴Pb

- Flat spectrum extrapolated from unblinded data
- Conservatively assigned 100% uncertainty to yield model
- ER background prediction:
 - SR0: 0.13 ± 0.13 Events
 - SR1: 0.56 ± 0.56 Events

Surface background:

ERs from ²¹⁰Pb plate out at detector walls

Data-driven model predicts
 < 0.3 Events → negligible

Sensitivity and prediction

Results from Unblinding

AC (SR1)

 \mathbf{ER}

Neutron

Total background

 ^{8}B

Observed

 17.8 ± 1.0

 0.7 ± 0.7

 $0.5^{+0.2}_{-0.3}$

 $26.4^{+1.4}_{-1.3}$

 $11.9^{+4.5}_{-4.2}$

 17.9 ± 1.0

 $0.5^{+0.7}_{-0.6}$

 0.5 ± 0.3

 26.3 ± 1.4

 $10.7^{+3.7}_{-4.2}$

37

ArXiv: 2408.02877

- Data agrees with the signal + background expectation
- Flux-weighted σCEvNS in agreement with SM
- Flux measurement in agreement with SNO (2013)

Flux-weighted $\sigma_{\rm CE\nu NS}$ $\rm [cm^2]$

Summary and Outlook

FIRST measurement of CEvNS cross section on a Xe target

Thank You!

Data taking still on going (SR2): we expect to measure the solar ⁸B neutrino signal at higher significance and to better constrain the neutrino flux

BACKUP

Low-ER excess in XENON1T

From: Phys. Rev. D 102, 072004

ER search in <30 keV range shown an excess of events over the expected background corresponding to a **3.3 o fluctuation**

Hypothesis of ³⁷Ar leak is excluded:

- Removed by Kr distillation
- Limits on air leak from other contaminants (Kr, Rn)

Several hypothesis:

- Solar axions (3.40 over bkg)
- Neutrino magnetic moment (3.20 over bkg)
- Bosonic DM: ALPs, dark photons (3.0σ over bkg)
- β decay of Tritium
- New Physics?

Efficiencies

Detection efficiency validated using Monte Carlo and Data-Driven methods

Good agreement between the two approaches

Total efficiency takes also event-selection efficiency into account

Tritium Enhanced Dataset (TED)

To Exclude presence of Tritium traces in the detector, XENONnT was operated **bypassing the GXe purification** for 14.3 days at the end of SR0

This would enhance the HT concentration in LXe by a factor 10-100

Data collected in this TED mode were **blinded**

After the unblinding, **no evidence was found for a tritium-like excess**

Tritium is therefore not included in the background model.

Low Energy ER Analysis

From: PRL 129, 161805 (2022)

Full blind analysis

- Energy range: (1-140) keV
- Fiducial mass: (4.37±0.14) t
- Exposure: 1.16 tons years

No excess observed

The excess observed in XENONIT could come from either tritium or statistical fluctuation

Factor ~5 reduction w.r.t. XENON1T

Limits on New Physics

WIMPs search

From arXiv: 2303.14729

Background model:

Electronic Recoil (ER): Mainly β decay of ²¹⁴Pb from ²²²Rn

Accidental Coincidences (AC): random pairing of small S1 and S2 signals

Surface/Wall: ²¹⁰Pb plate-out on the PTFE wall of the TPC

Nuclear Recoil backgrounds (same shape as WIMP):

- CEvNS
- Neutrons

Signal-like region containing 50% of a 200GeV/c² WIMP signal with highest signal-to-noise ratio

WIMPs Results

Comparison with other LXe Experiments

ER Background:

Spin-Independent WIMP-Nucleon cross section:

PandaX-4T PRL 129, 161804 (2022) XENONIT PRD 102, 072004 (2020) LZ arXiv:2207.03764

XENONnT PRL 129, 161805 (2022)

Same conservative power-constraint applied to results of other LXe experiments from non-blind

