Direct Dark Matter search with the CRESST-III experiment

Paolo Gorla Laboratori Nazionali del Gran Sasso - INFN

The CRESST collaboration

The CRESST experiment

CRÈSS⁻

• γs: ~0.73/(s cm²)

RICAP 2024

CRESST goal: direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors, operated at ~15 mK using Scintillating CaWO₄ crystals as target and Silicon on Sapphire (SOS) crystals as cryogenic light detector

The CRESST detector module

The CRESST detector module

radioactive background (electron recoils)

5	

Transition Edge Sensor

- The sensor is operated at the transition between normal and superconducting phase
- Very small temperature variations can be read out through measurable changes in the resistance

DARK MATTER Results

Det A: 23.6 g, E_{th} = 30.1 eV

Analysis optimized for very low energies: $30.1eV \rightarrow 16keV$ Acceptance region fixed before unblinding

Dark Matter Results (I)

Detector A – 23.6 g CaWO₄

data taking period 5.698 kg · days exposure baseline resolution 4.6 eV nuclear recoil threshold 30.1 eV

-31	~
32	(cm ²
33	u
34	ctic
35	Se
36	ross
37	ō
38	leon
39	luci
40	e-N
41	rticl
42	Ра
43	tter
44	Ma
45	ark
16	õ

Dark Matter Results (II)

Si2 wafer detector - 0.35 g Si

data taking periodNov 202exposure55.06 gbaseline resolution1.36 eVnuclear recoil threshold10.0 eV

Nov 2020 – Aug 2021 55.06 g days 1.36 eV 10.0 eV

RICAP 2024

CRESST-III 2019

SuperCDMS-0VeV 2022

Dark Matter Particle Mass (GeV/c²)

9

CRESST-III Si 2022 (this work)

SuperCDMS-CPD 2020

Section (pb)

Cross

ucleon

Particle

Dark Matter

 0^6

0⁵

04

 0^{2}

10

10

0.08

CRESST surf. 2017

---- Collar 2018

SD Limits with LiAlO₂ Detectors

Proton-only

Neutron-only

CRESST calibration with W recoil

Standard calibration \rightarrow ⁵⁵Fe source with X-ray at 5.9 keV **New Technique:**

Phys. Rev. D 108, 022005

RICAP 2024

CRAB collaboration JINST 16 P07032

Energy calibration for nuclear recoil

 $^{182}W(n,\gamma)^{183}W$ de-excitation with a single γ (6.1MeV)

\rightarrow Confirms our energy calibration \rightarrow Method can be used in the future

The Low Energy Excess (LEE)

First observations: 2016 – 2018

Unexplained event population at low energies

- high count rate
- steep rise in energy below ~200 eV
- different shape in different detectors •

Detector	Threshold	
Det-A	30.1eV	
Det-B	120 eV	
Det-E	64.8eV	
Det-J	83.4 eV	

Observations of LEE

LEE is observed in all CRESST detectors (independently from absorber material and geometry). Scaling the counting rate by volume (mass) does not improve the agreement between the different detectors.

The spectral shape is well described by a power-law

$$N(E,t) = C + E^{-1}$$

Time variation of LEE

Rate monitoring over time:

- Rate decays exponentially in time
- Reset of the rate after warm-up cycles
- Two decay constants
 - Fast decay ~ 10 days
 - Slow decay ~ 250 days

20.0 17.5 od 15.0 .⊑ 12.5 -ມີ 10.0 7.5 5.0 -

LEE rejection strategies

Adopted different holding mechanisms

Caused by holder stress?

Depending on crystal growth parameters?

Tested slow grown crystal

Dedicated modifications:

Bare Cu housing LiAIO2 Si Cu stick

Related to scintillating materials?

Removed scintillating materials

Analyzed LEE in a wafer detector

Depending on detector geometry?

Double TES

- Basic idea: instrument the absorber with 2 TES
- If the signal originates in the absorber the two TES are expected to show the same response.
- If the signal originates in or very close to one TES, the two response signals are expected to be different.

51

a - LNGS

Double TES - Measurement

CaWO₄

- 20x20x10mm³ crystal
- Two measurements in September and November 2022
- Above ground, wet cryostat
- Two independent heaters of independent stabilization
- Two 55Fe sources
- Two very reproducible transitions

Preventivi LNGS - 04/07/2024

Paolo Gorla - LNGS

17

Time variation of LEE

RICAP 2024

ts (I)

Paolo Gorla - LNGS

Double TES – Underground Test

To explore the full potential of Double TES technology a Run in the CRESST cryostat was mandatory (low background + low noise).

In February 2024, experimental Run37 detector modules have been installed in the CRESST cryostat:

- 5 Double TES CaWO₄ modules
- A stack of 4 Double TES Al₂O₃ LD with double TES (with ⁵⁵Fe source)
- 1 Mini-Beaker module
- TUM93A CaWO₄ from Run36

Double TES – Run 37

RICAP 2024

Paolo Gorla - LNGS

Double TES – Run 37

RICAP 2024

On March 23, 2024, the carousel reached operating temperature. TESs were operational and immediately set up to measure the LEE rate variation.

> In July 2024 neutron-calibration (AmBe) was started (calibration via n radiative absorption for $CaWO_4$). Once the calibration is completed we will start the official Double TES campaign.

Stay tuned for upcoming results!

Conclusion

- CRESST energy thresholds O(10eV) represent the state of the art in the exploration of the light DM mass region
- Recent results in terms of E threshold are very promising for extending sensitivity in the ~100 MeV range for the DM mass and both SI (Si, CaWO₄) and SD (LiAlO₂, Al₂O₃) interactions
- Calibration from recoils induced by radiative capture of thermal neutrons allows calibration of CaWO₄ detectors without introducing contaminants in the CRESST setup
- CRESST collaboration is preparing to increase the number of channels to enhance exposure
- LEE comprehension and reduction represent a crucial step for the light DM community. Recent CRESST achievements with Double TES are promising to finally solve this puzzle. Stay tuned for upcoming results!

RICAP 2024

Backup slides

Results from a Si Wafer Detector

Si2 wafer detector – 0.35 g Si

data taking period exposure baseline resolution nuclear recoil threshold

Nov 2020 – Aug 2021 55.06 g days 1.36 eV 10.0 eV

Using thin wafer detector as target and bulky detector as veto detector.

https://arxiv.org/abs/2212.12513

Paolo Gorla - LNGS

Results from a Si Wafer Detector

Si2 wafer detector – 0.35 g Si

data taking period exposure baseline resolution nuclear recoil threshold 10.0 eV

Nov 2020 – Aug 2021 55.06 g days 1.36 eV

25

CRESST @LNGS

SD Limits with LiAIO₂ Detectors

Li1 detector – 11.2 g LiAlO₂

data taking period	Nov 2020 – Aug 2021
exposure	1.161 kg days
baseline resolution	12.8 eV
nuclear recoil threshold	83.6 eV

Isotopes sensitive to SD interactions:

Isotope	$\langle S_p \rangle$	$\langle S_n \rangle$
⁶ Li	0.472	0.472
⁷ Li	0.497	
²⁷ AI	0.343	0.0296

Title Text

Mass Data taking Baseline resolution Energy threshold	LiAlO 11.2 g Nov 20 -Aug 12.8 eV 83.6 eV	Al ₂ O ₃ 0.6 g 21 Nov 20 - Aug 21 1.0 eV 6.7 eV	
SD rate: $\frac{dR}{dE} \sim \frac{(J+1)}{J} \langle S_{p/n} \rangle^2$			
Lithium aluminate • Contains ⁶ Li, ⁷ Li, ²⁷ Al • High $\langle S_{p/n} \rangle$ values \rightarrow high sensitivity		 Sapphire Contains ²⁷AI Low energy three → sensitive to vertice DM masses 	

Improved SD limits for both proton- and neutron-only case

shold ery low

Paolo Gorla - LNGS

CRESST upgrade

Objective

Unbiased (blind) analysis

- Design cuts on <u>non-blind</u> training set ($\leq 20\%$, excluded from DM data set) Apply without change to <u>blind</u> DM data set
- 1. 2.

Rate: noise conditions (14% of measuring time) Stability: Detector(s) in operating point (3% of measuring time) **Data quality:** Non-standard pulse shapes (e.g. i-Stick events and pileup) Coincidences: with μ -veto (7.6% of measuring time), i-Sticks, other detector modules

Keep only events where a correct determination of the amplitude (\rightarrow energy) is guaranteed

EFFICIENCY/SIGNAL SURVIVAL PROBABILITY

RICAP 2024

Simulated by artificial pulses placed at random positions in the data stream

Includes trigger and cuts

≥60% efficiency over broad energy range

OPTIMUM TRIGGER THRESHOLD Optimum filter for threshold analysis

Analytical description of amplitude distribution in empty baselines

J Low Temp Phys (2019) doi.org/10.1007/s10909-018-1948-6

10 June 2021

baseline trace

Histogram of

۵

typical

threshold

DETECTOR STABILITY

W-TES equipped with heaters

- Stabilization of detectors in the operating point
- Injection of heat pulses for calibration and determination of trigger threshold

Time evolution of LEE

LEE Rate Si2-wafer 12-200eV 600 mK 200 mK 130 K 3.5 K 30 K 11 K 12 Wy . . . 800 1000 1200 600 Time since cooldown (days)

Double TES – Run 37

RICAP 2024

On March 23, 2024, the carousel reached operating temperature. TESs were operational and immediately set up to measure the LEE rate variation.

In July 2024 neutron-calibration (AmBe) was started (calibration via n radiative absorption for CaWO₄). Once the calibration is completed we will start the official Double TES campaign.

Stay tuned for upcoming results!

