
APEIRON: a framework for the
development of smart TDAQ systems

(INFN Sezione di Roma - APE Lab)

Speaker: Cristian Rossi
(cristian.rossi@roma1.infn.it)

APEIRON: overview
APEIRON is a framework developed to offer hardware and
software support for the execution of real-time dataflow
applications on a system composed by interconnected
FPGAs

● Enabling the mapping the dataflow graph of the
application on the distributed FPGA system and
offering runtime support for the execution.

● Allowing users, with no (or little) experience in
hardware design tools, to develop their applications on
such distributed FPGA-based platforms:

○ Tasks are implemented in C++ using High Level
Synthesis tools (Xilinx® Vitis).

○ Lightweight C++ communication API (HAPECOM)
■ Non-blocking send()
■ Blocking receive()

APEIRON enables the scaling of Xilinx® Vitis High Level
Synthesis applications on multiple FPGA interconnected
by the INFN communication IP.

Why using FPGA?
➢ Energy efficiency

● Energy Efficiency has become an
important metric of performance in
recent years. The application and
computing scale is increasing
exponentially every year leading to an
enormous amount of data to be
processed
⇒ high power and energy consumption.

● FPGA architectures, together with a high
programmability, offer a good balance in
terms of performance and energy
efficiency without sacrificing the
throughput of the application.

J
R
T
I
P

(
2
0
2
1
)

1
8
:
2
4
2
9
–
2
4
4
0

Why using FPGA?
➢ Energy efficiency

● Energy Efficiency has become an
important metric of performance in
recent years. The application and
computing scale is increasing
exponentially every year leading to an
enormous amount of data to be
processed
⇒ high power and energy consumption.

● FPGA architectures, together with a high
programmability, offer a good balance in
terms of performance and energy
efficiency without sacrificing the
throughput of the application.

 I
C
E
S
S

(
2
0
1
9
)

d
o
i
:
1
0
.
1
1
0
9
/
I
C
E
S
S
.
2
0
1
9
.
8
7
8
2
5
2

EDP = Energy Delay Product

Why using FPGA?
➢ Real-time inference

● Customizable I/O and deterministic latency
make them well suited for TDAQ systems.

● In such systems, design challenge is the
processing throughput:

○ Pipelined designs can potentially produce
a new output at each clock cycle.

○ Initiation interval (II): Number of clock
cycles before the function can accept new
input data. The lower the II, the higher
the throughput

● High level synthesis tools allows to describe
datapaths in FPGA using high level software
languages (C/C++, OpenCL, SYCL,...), leveraging
#pragma HLS directives in order to increase
overall performances

APEIRON for smart TDAQ Systems
Abstract Processing Environment for Intelligent Read-Out systems based
on Neural networks

● Input data streams from several different channels (data sources,
detectors/sub-detectors) recombined through the processing layers
using a low-latency, modular and scalable network infrastructure

● More resource-demanding
NN layers can be
implemented in subsequent
processing layers.

● Classification produced by
the NN in last processing
layer (e.g. pid) will be input
for the trigger
processor/storage online
data reduction stage for
triggerless systems.

APEIRON building blocks:
● INFN Communication IP

INFN is developing the IPs implementing
a direct network that allows low-latency
data transfer between processing tasks deployed
on the same FPGA (intra-node communication)
and on different FPGAs (inter-node communication)

● Host Interface IP: Interface the FPGA logic
with the host through the system bus.

● Routing IP: Routing of intra-node and
inter-node messages between processing
tasks on FPGA. •

● Network IP: Network channels and
Application-dependent I/O

○ APElink 20 Gbps → 40 Gbps
○ UDP/IP over 1/10 GbE → 25/40/100 GbE
○ ETH port → Xilinx® 10G/25G High Speed

Ethernet Subsystem

APEIRON building blocks:
● Software Stack The APEIRON runtime software stack is

built on top of the Xilinx® XRT one adding
three layers to:

● add the functionalities required to manage
multiple FPGA execution platforms (e.g., program the
devices, configure the IPs, start/stop execution, monitor
the status of IPs, ...);

● reduce the impact of changes in XRT API introduced with
any new version of Vitis on the APEIRON host-side
applications;

● decouple the APEIRON software stack from the specific
platform, easing the future porting of the framework to
different platforms/vendors.

Apeirond is a persistent daemon used to manage multiple
access request from user apps to the board.
Using the network socket exposed by apeirond modules, the
supervisor can write commands and read status of the
different instances of the APEIRON framework running in
each node, allowing the user to have a complete overview of
the multiple FPGA execution platform

APEIRON: FPGA bitstream generation
● The HLS task must have a generic interface,

implementation is free
● A YAML configuration file is used to describe the

kernels interconnection topology, specifying how
many input/output channels they have

Adaptation toward/from IntraNode ports of the
Routing IP is done by the automatically generated
Aggregator and Dispatcher kernel templates.

void example_task(
[list of optional kernel specific
parameters], message_stream_t
message_data_in[N_INPUT_CHANNELS],
message_stream_t
message_data_out[N_OUTPUT_CHANNELS])

APEIRON performance
(Communication IP: 256 bit datapath @200MHz)

Latency DDR+sync(ns) BRAM(ns)
Intra-node (localtrip) 533 213
Inter-node (roundtrip) 1065 768

Bandwidth DDR+sync(MB/s) BRAM(MB/s)
Intra-node (loopback) 3938 5967
Inter-node (oneway) 3938 4658

APEIRON applications:
● FIPLib-multiFPGA
FPGA Image Processing Library ⇒ multi-FPGA implementation via APEIRON

● Developed by ENEA in C++, it employs the
Vitis HLS flow to construct the library's
kernels for the execution of image processing
algorithms.

● FIPLib encompasses nearly 70 functionalities,
conceived with a streaming behavior

● On a multi-FPGA setup, we were able to split
the overall image processing by
implementing a single RGB kernel on each
node
 ⇒ increased internal datapath to 32B,
avoiding FPGA resource limitation

APEIRON applications:
● FIPLib-multiFPGA
FPGA Image Processing Library ⇒ multi-FPGA implementation via APEIRON

● Implementing FIPLib HLS
kernels as APEIRON tasks
means changing the
interface of each of them
to cope with the standard
required by the framework
to compile the entire
project and to generate
the bitstream
⇒ use of HAPECOM C++
communication API

APEIRON applications:
● FIPLib-multiFPGA

Energy Efficiency - Throughput

trade-off

APEIRON applications:
● RAIDER
Real-time AI-based Data analytics on hEteRogeneous distributed systems

● High throughput online streaming processing on
multi-FPGA ⇒ number of Cherenkov rings prediction
on the stream of events generated by the RICH detector
in the CERN NA62 experiment at a rate of about 10 MHz,
using multiple CNN_kernel replica.

● Lightweight CNN model deployed on Xilinx Alveo U280
FPGA (limited resource usage)
⇒ receives as input compressed
representation of the
original event in form of
B&W 16x16 image
(via imagifier kernel)

APEIRON applications:
● RAIDER

x100

x20

Conclusions

● The APEIRON framework enables the development and deployment
of Vitis HLS dataflow applications distributed on multiple-FPGA
systems, leading to increased performance in terms of throughput
and energy efficiency

● The co-design of its software stack and of the Communication IP
allowed to reach very low and deterministic latency and a high
fraction of the channel's raw bandwidth for communications
between FPGAs, addressing fundamental bottlenecks for real-time
distributed dataflow applications.

● We control the workflow for the implementation of real-time/high
throughput classifiers on FPGA using limited resources,
This hints for applying the methodology also to:

○ less capable (i.e. front-end) FPGAs
○ complex design making use of a large fraction of FPGA resource

⇒ multi-node setup/user-defined topology

Conclusions

● Eager to find new applications for APEIRON framework,
feel free to contact us!

Thanks for your attention!

Contacts:
● cristian.rossi@roma1.infn.it
● alessandro.lonardo@roma1.infn.it

mailto:cristian.rossi@roma1.infn.it
mailto:alessandro.lonardo@roma1.infn.it

BACKUP SLIDES

FPGA overview

The basic structure of an FPGA is
composed of the following elements:
● Look-up table (LUT): This

element performs logic
operations

● Flip-Flop (FF): This register
element stores the result of the
LUT

● Wires: These elements connect
elements to one another, both
logic and clock

● Input/Output (I/O) pads: These
physically available ports get
signals in and out of the FPGA

FPGA FPGA FPGA

FPGA CPU FPGA CPU
FPGA FPGA

CPU

STORAGE SERVER
/

TRIGGER PROCESSOR

Proc Layer 0

Proc Layer 1…

Proc Layer n-1

Input data
Ch 0

Input data
Ch 1

Input data
Ch n-1

