

Evaluating the contribution of young pulsar wind nebulae to the Galactic high-energy neutrinos

Xuanhan Liang (梁軒翰), Prof. Ruoyu Liu (柳若愚)

Nanjing University

24.9.2024 Frascati, Roma, Italy

- Introduction: neutrino & PWN
- PWN model & Crab fitting
- Sampling & result
- Summary

Neutrino emission from Galactic plane

Diffuse emission or point sources?

- Statistical difference: not prominent
- PWN as neutrino source in the Galaxy (e.g. Bednarek 2003, Di Palma+2017)

	Flux sensitivity Φ	P value				
	Diffuse Galactic plane analysis					
π^{0}	5.98	1.26 × 10 ⁻⁶ (4.71σ)				
KRA_{γ}^{5}	0.16 × MF	6.13 × 10 ⁻⁶ (4.37σ)				
KRA_{γ}^{50}	0.11 × MF	3.72 × 10 ⁻⁵ (3.96σ)				
	Catalog stacking analysis					
SNR		$5.90 \times 10^{-4} (3.24\sigma)^*$				
PWN		5.93 × 10 ⁻⁴ (3.24 _o)*				
UNID		$3.39 \times 10^{-4} (3.40\sigma)^*$				

Energy spectra for different Galactic plane models from IceCube 2023

Pulsar wind nebula

- Possible spectral hardening at ~ PeV of the Crab -- Possible proton contribution (LHAASO 2021)
- Injection from the pulsar
- > Typically $\eta_B + \eta_e = 1$; now $\eta_B + \eta_e + \eta_p = 1$
- (10–50)% of the spin-down energy converted into proton (Liu+2021)
- Young pulsar wind nebula
- Free expansion phase
- > More particles being injected; higher cutoff energy

A schematic diagram of a PWN-SNR system (Gaensler+2006)

Phenomenological modelling of Crab

- Two different populations of electrons
- Radio e: not well understood; stochastic acceleration? (e.g. Tanaka & Asano 2017)
- Wind e: accelerated at the wind termination shock
 - B-field

 $B(r) = B_0 \left(\frac{r}{r_{\rm ts}}\right)^{-\alpha}, \ \alpha \sim 0.5$

(Dirson+2023, Aharonian+2024)

Evolution of the nebula

Vorster+2013

$$V(r,t) = V_f \frac{R_{\rm pwn}(t)}{t} (r/R_{\rm pwn}(t))^{-\beta}, 0 < V_f < 1$$

spherically
symmetric
$$B(r,t) = B_0(t)(r/R_{ts}(t))^{\beta-1} = \frac{dW_B(t)}{dt} = \eta_B L(t) - \frac{W_B(t)}{R_{pwn}(t)} \frac{dR_{pwn}(t)}{dt}$$
$$W_B(t) = \int B^2(r, t)r^2 dr/2$$

$$D(r, E, t) = D_0 (r/R_{\rm ts}(t))^{1-\beta} (E/E_{\rm cut})^{1/3}, D_0 = \frac{cE_{\rm cut}}{3eB}$$

- Inner boundary: $R_{ts} = \sqrt{L/4\pi c P_{pwn}}$; stops increasing after reaching 0.13 pc
- Outer boundary: R_{pwn} : an approximation given by Bandiera+2021; $R_{pwn} = 2 \text{ pc at } T_{age} = 970 \text{ yr}$

E _{sn}	M _{ej}	$n_{ m ISM}$	n	L _{s0}	$ au_0$
$1 \times 10^{51} \text{ erg}$	9 M _{sun}	0.1 cm^{-3}	2.519	3×10^{39} erg/s	680 yr

Particles in the nebula

$$Q_{\rm inj}^{\rm e}(\gamma_{\rm e}, t) = Q_0^{\rm e}(t) \begin{cases} \left(\frac{\gamma_{\rm e}}{\gamma_{\rm b}}\right)^{-\alpha_1} & \gamma_{\rm e,min} \leqslant \gamma_{\rm e} < \gamma_{\rm b} \\ \left(\frac{\gamma_{\rm e}}{\gamma_{\rm b}}\right)^{-\alpha_2} & \gamma_{\rm b} \leqslant \gamma_{\rm e} \leqslant \gamma_{\rm e,max} \end{cases} \qquad \gamma_{\rm e,max} = \frac{3\varepsilon e}{m_{\rm e}c^2} \sqrt{\frac{\eta_{\rm B}L(t)}{c}}$$

synchotron and adiabatic loss

$$Q_{\rm inj}^{\rm p}(\gamma_{\rm p},t) = Q_0^{\rm p}(t) \left(\frac{\gamma_{\rm p}}{\gamma(1\,{\rm TeV\,})}\right)^{-\alpha_{\rm p}} e^{-\frac{\gamma_{\rm p}}{\gamma_{\rm p,cut}}} \qquad \gamma_{\rm p,min} = \frac{1\,{\rm TeV}}{m_{\rm p}c^2}, \\ \gamma_{\rm p,cut} = \frac{3\varepsilon e}{m_{\rm p}c^2} \sqrt{\frac{\eta_{\rm B}L(t)}{c}} \qquad \text{adiabatic loss}$$

$$\frac{\partial n_i}{\partial t} = D_i \frac{\partial^2 n_i}{\partial r^2} + \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 D_i) - V \right] \frac{\partial n_i}{\partial r} - \frac{1}{r^2} \frac{\partial}{\partial r} [r^2 V] n_i + \frac{\partial}{\partial \gamma_i} [\dot{\gamma_i} n_i] + Q_i,$$

Boundary conditions

$$V_0 n_i - D_i(R_{\rm ts}, \gamma_i, t) \frac{\partial n_i}{\partial r} = \frac{Q_{i,\rm inj}}{4\pi R_{\rm ts}^2(t)}$$
$$n_i(R_{\rm pwn}, \gamma_{\rm i}, t) = 0$$

Crab fitting

- Dust and radio e following Dirson+2023
- Not strictly fitted, especially the optical to UV data
- $B_0 \approx 190 \mu$ G, slightly weaker compared to Dirson+2023 & Aharonian+2024

α1	α2	$\gamma_{e,\min}$	$\gamma_{e,b}$	${\eta}_{ m B}$	${\eta}_{ m e}$	${\eta}_{ m p}$	β	V_f
1.7	2.3	2e5	1e6	0.013	0.927	0.06	0.5	0.15

Filaments in the Crab

- Formed by R-T instability
- Mass in Crab 7.2 M_{sun} (Owen+2015),
 - ~ 80% of $M_{\rm ej} (= 9M_{\rm sun})$

Composite image of the Crab (Owen+2015)

MHD simulation (Porth+2014)

Amplification factor

• Effective density > mean density -- inhomogeneous

distribution of the gas (Atoyan+1996)

- (0.5-1) R_{pwn} : filled with filaments, $0.8M_{\text{ej}}/V_{\text{fila}} = \rho_{\text{fila}} \rightarrow n_{\text{fila}}$
- Amplification factor $f_a = n_{eff}/n_{fila}$

 $\alpha = 1.5, f_a \approx 10$

 $\alpha = 2.0, f_a \approx 20$

1016

Pulsar distribution

- Radial distribution of pulsar surface density from Xie+2024
- $\sim 1.1 \times 10^5$ pulsars after beaming correction (Tauris+1998)

An example of the simulated distribution of pulsars in the Galaxy (arm structure based on Hou+2014)

Parameters

• Fixed parameters

 \succ $T_{\text{age}} \ge 500 \text{ yr}, M_{\text{fila}} = 0.8 M_{\text{ej}}, n = n_{\text{eff}} \text{ for (0.5-1) } R_{\text{pwn}}$

n	$\eta_{ m B}$	$\eta_{ m p}$	β	pulsar birth rate (per century)	V_f
3	0.02	0.1	0.5	1.5	0.5

• Sampling 20 times

Result

- Green region: the overlap between the orange and cyan region
- $\alpha = 2.0, f_a = 20$; optimistically, ~ 10% of the IceCube π^0 best-fit result at 100 TeV

Result

- NO diffusion
- Similar optimistic result, ~ 10% of the IceCube π^0 best-fit result at 100 TeV

Result

- $\alpha = 1.5, f_a = 10$
- Up to ~ 25% of the IceCube result at 100 TeV
- ~ 50% of the simple power law extrapolation to 1 PeV

- The Crab nebula is treated as a standard of the PWN model.
- A slightly weaker magnetic field $B \approx 190 \mu$ G is obtained and about 6% of the spin-down energy is converted into protons.
- Amplification factor $f_a = n_{eff}/n_{fila}$ describes the relation between the effective number density

and the average number density of the filaments.

- For $\alpha = 2.0$, the synthetic young PWNe may contribute ~ 10% of the IceCube π^0 best-fit flux at 100 TeV in the optimistic case. For a harder spectrum $\alpha = 1.5$, the number rises to ~ 25%.
- Further discussion is needed for different values of the parameters.