Contribution of young massive stellar clusters to the Galactic diffuse γ-ray emission

Stefano Menchiari¹, G. Morlino², E. Amato², N. Bucciantini², G. Peron², G. Sacco² ¹CSIC - Instituto Astrofísica Andalucía ²INAF - Osservatorio Astrofisico di Arcetri

9th Roma International Conference on AstroParticle Physics Frascati – 25/09/2024

Young massive star clusters (YMSC): Cosmic rays and y-ray sources

YMSCs: Clusters of hundreds OB-type ($M_{\Rightarrow}>3 M_{\odot}$)stars packed in few pc.Young: Age <10 Myr</td>Massive: $M_{sc}>10^3 M_{\odot}$

Several cosmic ray (CR) acceleration mechanisms proposed in YMSCs. A few examples:

- Acceleration in massive stars winds (Casse & Paul, 1980)
- Acceleration in cluster wind termination shock (TS) (Morlino et al., 2021)
 - Acceleration in cluster core by SNRs (Vieu et al. 2022, Vieu & Reville 2023)

γ-ray emission detected in coincidence with **<u>12 YMSC!</u>**

16^h52^m 48^m 44^m 4 Right Ascension

Name	$\log {\it M}/M_{\odot}$	r_c	D	Age	L_w
		[pc]	[kpc]	[Myr]	$[\text{erg s}^{-1}]$
Westerlund 1	4.6 ± 0.045	1.5	4	4 - 6	10
Westerlund 2	4.56 ± 0.035	1.1	2.8 ± 0.4	1.5 - 2.5	2
Cygnus OB2	4.7 ± 0.3	5.2	1.4	2 - 7	2
NGC 3603	4.1 ± 0.1	1.1	6.9	2 - 3	-
BDS 2003	4.39	0.2	4	1	-
W40	2.5	0.44	0.44	1.5	-
RSGC 1	4.48	1.5	6.6	10 - 14	-
MC 20	~ 3	1.3	3.8 - 5.1	3 - 8	~ 4
NGC 6618	-	3.3	~ 2	< 3	-
30 Dor (LMC)	4.8 - 5.7	multiple	50	1	
NGC 2070 / RCM 136	4.34 - 5	subcluster	50	5	

Extended emission

Diffuse emission data

Analysis of GDE (LHAASO+Fermi-LAT) reveals contribution from unresolved sources (Zhang et al 2023)!!!

Work objective

OBJECTIVES:

 Estimate a <u>lower</u> <u>limit</u> contribution to Galactic diffuse emission from YMSCs
Comparison with observations
15°<l<125°, |b|<5° (ROI1)
125°<l<235°, |b|<5° (ROI2)

Nota bene: Population of YMSCs in Milky Way is not known! <u>Use a synthetic</u> population of YMSC

Work objective

OBJECTIVES: STEP 3 1) Estimate a lower **STEP 2** a) Cosmic ray limit contribution to Galactic diffuse acceleration **STEP 1** a) Modeling emission from YMSCs mechanism: stellar population 2) Comparison with **Modeling galactic** Acceleration at the observations in a YMSC population of cluster wind 15°<l<125°, |b|<5° (ROI1) termination shock (TS) **YMSCs:** 125°<l<235°, |b|<5° (ROI2) b) Modeling (Morlino et al. 2021) Use info from local stellar wind population of Nota bene: b) Modeling y-ray **YMSCs** physics: Population of YMSCs Use pure empirical emission: in Milky Way is not Pure hadronic approach known! emission Use a synthetic population of YMSC

Required ingredients

STEP 1 Milky Way YMSCs population

Synthetic YMSCs population (I)

YMSC distribution function: $\xi_{SC}(M_{SC}, t, r, \theta) = \frac{dN_{SC}}{dM_{SC}dtdrd\theta} = \underline{f(M_{SC})}\psi(t)\rho(r, \theta)$

• Cluster IMF: $f(M_{SC}) \propto M_{SC}^{-1.54}$ [2.5 – 6.3x10⁴ M_{\odot}] (Piskunov et al, 2018)

Synthetic YMSCs population (I)

YMSC distribution function: $\xi_{SC}(M_{SC}, t, r, \theta) = \frac{dN_{SC}}{dM_{SC}dtdrd\theta} = f(M_{SC})\psi(t)\rho(r,\theta)$

- Cluster IMF: $f(M_{SC}) \propto M_{SC}^{-1.54}$ [2.5 6.3x10⁴ M_o] (Piskunov et al, 2018)
- Cluster radial distribution follow giant molecular cloud (Hou & Han 2014)

Synthetic YMSCs population (II)

Single realization of the Galactic population

Total number of YMSCs: <u>747</u> (Age <10 Myr, M_{sc} >10³ M_{\odot})

Spatial distribution (100 realizations)

STEP 2 Stellar population in clusters

Stellar population in YMSC

Total number of stars:

$$N_{\star} = \Lambda M_{\rm SC} \quad \text{where} \quad \Lambda = \frac{\int_{M_{\star,\min}}^{M_{\star,\max}} f_{\star}(M_{\star}) dM_{\star}}{\int_{M_{\star,\min}}^{M_{\star,\max}} M_{\star} f_{\star}(M_{\star}) dM_{\star}}$$

- \circ Stellar initial mass function (IMF) according to Kroupa (2001)
- $\,\circ\,$ Maximum stellar mass is 150 M $_{\odot}$

Stellar population in YMSC

• Total number of stars:

$$N_{\star} = \Lambda M_{\rm SC} \quad \text{where} \quad \Lambda = \frac{\int_{M_{\star,\min}}^{M_{\star,\max}} f_{\star}(M_{\star}) dM_{\star}}{\int_{M_{\star,\min}}^{M_{\star,\max}} M_{\star} f_{\star}(M_{\star}) dM_{\star}}$$

λ

- $\,\circ\,\,$ Stellar initial mass function (IMF) according to Kroupa (2001)
- $\,\circ\,$ Maximum stellar mass is 150 M $_{\odot}$
- All stars that have left the main sequence at a time equal to the age of the cluster are removed, with exception of WR stars ($t_{TO} < t < t_{TO}$ +0.3Myr and M_{\Rightarrow} >25M₀)

WE DO NOT ACCOUNT FOR THE ENERGY INJECTED BY SUPERNOVE!

CR (and y-ray) normalization and maximum energy must be interpreted as lower limits!

Stellar wind physics

- 1. <u>Calculate mass loss rate</u>:
 - **OB-type** stars (\dot{M}_{\star}) (Nieuwenhuijzen et al. 1990)
 - WR stars (*M*_{*,WR}) (Nugis & Lamers, 2000)
- 2. <u>Calculate wind speed</u> $(v_{\star,w})$:
 - **OB-type** stars (Kudritzki & Puls, 2000)
 - WR is kept constant to 2000 km/s
- 3. <u>Calculate wind luminosity</u>: $L_{*,W} = \frac{1}{2}\dot{M}_*v_{*,W}^2$

4. Cluster wind luminosity and mass loss rate calculating by summing all $L_{\star,W}$ and \dot{M}_{\star}

STEP 3 Cosmic ray acceleration

CR distribution in YMSCs

Morlino et al (2021)

CR accelerated at cluster wind TS + Propagation in the turbulent bubble

1) Spectral slope: $\propto p^{-4.2}$

2) Normalization: 10% of wind power spent to accelerate CRs

CR distribution in YMSCs

Morlino et al (2021)

CR accelerated at cluster wind TS + Propagation in the turbulent bubble

- 1) Spectral slope: $\propto p^{-4.2}$
- 2) Normalization: 10% of wind power spent to accelerate CRs
- 3) Target gas density for hadronic gamma emission: 10 cm⁻³
- 4) Particle spectrum (and so the gamma flux) depends on diffusion coefficient!

THREE CASES CONSIDERED:

Comparison with γ–ray data

Diffuse γ-ray emission (ROI1)

- **<u>Pink</u>**: diffuse CR sea emission + contribution from YMSCs
- <u>Filled regions</u>: contribution from YMSCs
- <u>Dashed regions</u>: contribution from YMSCs without WRs

<u>ROI1:</u> 15°<glon<125°, |glat|<5°

Diffuse γ-ray emission (ROI2)

ROI2: 125°<glon<235°, |glat|<5°

<u>Pink:</u> diffuse CR sea emission + contribution from YMSCs <u>Filled regions</u>: contribution from YMSCs <u>Dashed regions</u>: contribution from YMSCs without WRs

What about neutrinos?

Using synthetic YMSCs, we can estimate the contribution to **Galactic neutrino flux**

(Menchiari S., Celli S., Vecchiotti V., Peron G., Morlino G., Lopez-Coto R., in prep)

Conclusions

- Importance of YMSCs as high energy sources has constantly growing in the last decades
- First comprehensive study of Galactic population of YMSCs
- Contribution to the diffuse emission likely not negligible from hundreds of GeV to hundreds of TeV.
- **Future prospects**
- Evaluate contribution to neutrino flux

Scan me to access the pre-print

https://arxiv.org/abs/24 06.04087

BACKUP SLIDES

Expected detections

Synthetic YMSCs population (III)

Single realization of the Galactic population

Stellar wind physics

- Mass loss rate **OB-type** stars (\dot{M}_{\star}) by Nieuwenhuijzen et al. (1990) $\frac{1}{2}$

$$\log\left(\frac{\dot{M}_{\star}}{\mathrm{M}_{\odot}\mathrm{yr}^{-1}}\right) = -14.02 + 1.24\log\left(\frac{L_{\star}}{\mathrm{L}_{\odot}}\right) + 0.16\log\left(\frac{M_{\star}}{\mathrm{M}_{\odot}}\right) + 0.81\left(\frac{R_{\star}}{\mathrm{R}_{\odot}}\right)$$

- Wind luminosity **OB-type** stars [stellar winv speed $v_{\star,w}$ by Kudritzki & Puls (2000)]

$$L_{\star,w} = \frac{1}{2} \dot{M}_{\star} \left\{ C(T_{\text{eff}})^2 \left[\frac{2GM_{\star}(1 - L_{\star}/L_{\text{Edd}})}{R_{\star}} \right] \right\} v_{\star,w}^2$$

- Mass loss rate **WR** stars ($\dot{M}_{\star,WR}$) by Nugis & Lamers (2000)

$$\dot{M}_{\star,\mathrm{WR}} = 10^{-11.0} \left(\frac{L_{\star,\mathrm{WR}}}{L_{\odot}}\right)^{1.29} \left(\frac{Y_{\mathrm{WR}}}{Y_{\odot}}\right)^{1.73} \left(\frac{Z_{\mathrm{WR}}}{Z_{\odot}}\right)^{0.47} \frac{\mathrm{M}_{\odot}}{\mathrm{yr}}$$

- Wind speed for **WR** is kept constant to 2000 km/s

Cluster wind luminosity and mass loss rate calculating by summing all $L_{\star,w}$ and \dot{M}_{\star}

GDE data: Fermi-LAT, ARGO and LHAASO. <u>ROI1:</u> 15°<glon<125°, |glat|<5° <u>ROI2:</u> 125°<glon<235°, |glat|<5°

Note: GDE data are provided after masking known detected sources (TeVCat+LHAASOcat) We define a similar mask for our simulations

Synthetic YMSCs population (IV)

Maximum energy distribution shows bimodality (with and without WR)