The evolution of the Data Acquisition System of KM3NeT

Francesco Benfenati on behalf of the KM3NeT Collaboration

INFN-Bologna Dipartimento di Fisica e Astronomia - Università di Bologna

F.Benfenati

The KM3NeT neutrino experiment

KM3NeT = Km³ Neutrino Telescope

• ARCA (Astroparticle Research with Cosmics in the Abyss)

¶Off-shore Sicily, Italy at ~3500m below sea level

Observation of **high energy** (GeV-PeV) astrophysical neutrino sources

Currently: ARCA28

• ORCA (Oscillation Research with Cosmics in the Abyss)

 \P Off-shore Toulon, France at ~2500m below sea level

Determination of neutrino mass hierarchy and oscillation parameters (O(10-100) GeV)

Currently: ORCA19

2024 marine campaign starting next week!

Last ARCA marine campaign (2023)

Detection principle

- Reconstruct direction/energy from PMT hits
- Exploit Cherenkov effect in water induced by outgoing leptons

F.Benfenati

PMT hits

Performances:

- < 1 ns timing with "White Rabbit" system
- < 20 cm positioning accuracy with <u>acoustic pos. system</u>

A network of hydrophones and beacons allows, together with DOMs piezo-sensors, to determine the position of DOMs via signal triangulation

The Central Logic Board

Central Logic Board firmware architecture

Two LM32 cores

- White Rabbit core for timing control
- KM3NeT CLB core for **DAQ control/** instrumentation readout

Three DAQ modules

- Time to Digital Converter (TDC) from PMTs
- AES-standard receiver from hydrophones
- MONitoring for performance information

Central Logic Board (CLB)

Octopus Large: 19 PMTs and Small: 12 PMTs + piezoelectric sensor (for acoustic positioning)

High-level diagram of CLB gateware and network data-path

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

С

D.A.Q. requirements

- Big volume
- Water optical properties (absorption & scattering of blue-green photons \sim 50-100 m)
- Good angular resolution $O(0.1^\circ)$ for neutrino astronomy

- <u>Trigger-less</u> streaming readout
- complex DAQ structures in harsh conditions (mandatory: minimal underwater complexity)

- <u>signal-to-noise ratio extremely disfavoured</u> :
- muon rate (atmospheric dominating): $O(100) Hz/km^3$
- 40 K decays (~constant): O(10) kHz/PMT
- Bioluminescence (occasional): O(100) kHz/PMT

Physical constraints

Scalable DAQ design

Detector constraints

ory:

ALL DATA TO SHORE approach

Drawbacks

High continuous throughput to shore: → large bandwidth switching infrastructure → strong data reduction

Network general overview

F.Benfenati

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

Timing synchronization

Broadcast White Rabbit - topology

F.Benfenati

DOMs

"Broadcast" scenario (current implementation)

- **ARCA:** up to 32 strings
- White Rabbit switch (WRS) **specific** customization required
- Not scalable to large number of strings (limited fibers in submarine cables)

- **Reduction** of a factor 10 in the number of

Software Defined Networking

F.Benfenati

DOMs

"Broadcast" scenario (current implementation)

- One shared channel to communicate from shore to sea (*broadcast*). One dedicated channel for each DOM to send data/replies to shore
- Software Defined Networking is needed to prevent fatal conditions due to uncontrolled loops in the switching infrastructure

- **Reduction** of a factor 10 in the number of

- Asymmetric network topology leads to switch operating in a not-standard configuration: any possible network flow must be mapped by an explicit Software Defined Network **rule**
 - if a packet does not match any rule is **discarded**
- Two instances representing the macro group of flows
 - From Detector to Shore
 - From Shore to Detector

Software Defined Networking

SCSF1

Dom BOOTP

DOM DHCP reqs

SCSF3-1

DOM to DQ1

SCSF3-n DOM to DQn

One rule per DataQueue

SCBD

Standard White Rabbit - topology

F.Benfenati

- **ARCA:** up to 32 strings

"Standard White Rabbit" scenario

- **ARCA:** beyond 32 strings
- **Reduction** of a factor 10 in the number of \bullet fibers in the submarine cable
- Standard technology: easy debug, maintenance and updates
- All 1:1 connections

Standard White Rabbit - DOM

- The only modified component is the **Central Logic Board**
- Main changes: improvement of the clocks routing, new oscillator models \rightarrow better phase noise and stability
- New Glenair bidirectional transceiver (higher reliability) and Glenair optical fiber

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

Standard White Rabbit - Base Module

Wet White Rabbit Switch:

- 2 tunable long range SFPs for connection with the on-shore station
- CLB connected to both WWRS (cold **redundancy** applied)
- 23 bidirectional short range transceivers for DOM connections, CLB connection, and inter-WWRS connection (backup interlink)

F.Benfenati

- Re-designed form factor
- New power boards
- Custom White Rabbit Switches

Switching "Glenair" backplane KM3NeT (designed @Nikhef)

Standard WR Switch Core Board

Custom **Glenair** backplane and Glenair transceivers

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

KM3NeT White Rabbit network

Software Defined Networking

Broadcast + Standard White Rabbit: merged scenario

1) Proper routing of the communication

2) Proper data streaming aggregation

- The SDN implementation has been adapted to include DUs in Standard White Rabbit.
- It required to separate shore-to-sea traffic by IP address

Test environment in Bologna

Broadcast "DU"

F.Benfenati

Standard White Rabbit "DU"

Test environment in Bologna

Rack 1 - networking

TDK-Lambda - 375 V Power supplier EDGE-CORE 24 - 1 GbE Management switch MEINBERG MicroSync Rx - GPS WRS-Grand Master WRS-Bridge WRS-Broadcast WRS-Level 1 DELL S3124F - **SCBD** DELL S4048F-ON - SCSF DELL S3124F-ON - **DFES** DELL S3124F - DRY-FES DRYWRS Riello 3000VA UPS

F.Benfenati

Rack 2 - computing

Supermicro - Xeon(R) CPU E5-2630 v2 @ 2.60GHz - Bastion Host Supermicro - Xeon(R) CPU E5-2630 v2 @ 2.60GHz - spare server

E4 TwinSquare server - Control Unit, Optical data Writer, Acoustic DataWriter, spare servers

Italware Single servers- DataQueues

E4 TwinSquare server - Optical Data Filters, Acoustic Data Filters

DELL S4148F-ON - STRIDAS

EDGECORE 24 Port - 1GbE Management Switch & public LAN access

Raritarn - KVM hub

E4 Twin server - spare servers

Raritarn- KVM console

E4 high-density disk server - **data storage**

Keysight- secondary 375 V Power supplier

E4-AMD EPYC 7443 24-Core Processor (96 core) + 2 Nvidia A200 GPUs - **QUOLAM**

Riello 3000VA UPS

- Coming soon: a much bigger detector with two different architectures running simultaneously
- Data Acquisition in the Standard White Rabbit architecture has been successfully tested in Detection Unit integration sites
- Data Acquisition in the hybrid architecture has been successfully tested in Bologna (lab)

... stay tuned!

Conclusions

F.Benfenati

Spare slides

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

KM3NeT Neutrino telescopes

• Current sea floor maps of deployed and data taking DUs

• Different topologies, same detector concept

	ARCA	ORCA
Location	Italy	France
N. building blocks	2	1
N. DU per b.b.	115	115
DU distance	90 m	20 m
DOM spacing	36 m	9 m
DU height	~ 800 m	~ 200 m
Instrumented mass (Mton)	2*650	7
Depth	3500 m	2500 m

D.A.Q general overview

F.Benfenati

ARCA shore station

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

KM3NeT White Rabbit network

F.Benfenati

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

F.Benfenati

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

F.Benfenati

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

Software Defined Networking

- One shared channel to communicate from shore to sea (the *broadcast* channel). A dedicated channel for each DOM to reply to shore
- Broadcast intrinsic asymmetry violates the basic principles of the ethernet communication.
- Software Defined Networking is needed to prevent fatal conditions due to uncontrolled loops in the switching infrastructure

Software Defined Networks in the Broadcast scenario

F.Benfenati

- Asymmetric network topology leads to switch operating in a notstandard configuration: any possible network flow must be mapped by an explicit **SDN rule**
 - if a packet does not match any rule is **discarded**
- Two SDN instances representing the macro group of flows
 - From Detector to Shore
 - From Shore to Detector
- Implementation :
 - JAVA controller (Karaf) implemented on container
 - Python helper script

Software Defined Networking

SCBD

Bologr

- 1 DU test bench (Broadcast) \rightarrow 18 x CLBs/DOMs v2 + 1
- 1 DU test bench (Srd. White Rabbit) $\rightarrow 18 \times \text{CLBs/DOMs}$
- OctoPAES: INFN-BO custom electronic boards for PMT/f
 Fully-compliant on-shore infrastructure to production site
- Computing farm for Trigger and DAQ implementation.
- Test runtime condition of a DU
- Throughputs of various channels (PMTs/Acoustic/Monitori
- Effectiveness of NG-Firmware for CLBv4
- Control of DU and BM CLBv4 boards
- Check boards temperatures and power consumptions

WR Broadcast

The OctoPAES board

• PMT and Acoustic Emulation of Signal • Emulates the presence of PMTs + Octopus boards (Small/Large)+piezo/hydrophone

No Octopus, PMT bases, PMTs, piezo

- Hit-time information encoded in a binary file
- Master/Slave with clock distribution in daisy chain + start/stop in parallel
- Signal (@5Hz,10Hz,1kHz,10kHz) + Background (a)5kHz)
- Binary file creation automatized with a GUI

F.Benfenati

Spectral distribution digital piezo from file: "aes-OP_Ermes_v1_5kHz-20201218-CLB218-03.dmp"

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

512 Frequency [Hz] 29

The Control Unit

The Control Unit components and their relationships. White and black arrows represent flows of information and/or control signals. Red arrows show the flow of authentication information. The flow of data from the TriDAS to the final storage is not shown.

F.Benfenati

The CU is a collection of (web) services which, via a state machine, drive

- the Detector
- the computing processes
- the interactions with DB for
 - runsetups, calibrations
- Instruments data logging

9th Roma International Conference on AstroParticle Physics - Frascati 26/09/2024

< 20 Mbps/DOM

F.Benfenati

- **Timeslice** (TS): it is the abstract subdivision of the continuity in the time-line of the experiment.
- Frame: it is the group of information of a certain flavour (TDC, AES, MON) occurred in a DOM during a TS.

Acoustic World

Acoustic data must be sent in a continuous stream, addressing all data from one DQ to a single Acoustic DF. Independent reconstruction of the *Time Of Arrival* (**TOA**) of acoustic signals from various beacons

of the experiment. curred in a DOM during aTS.

F.Benfenati

Optical data for Physics

Case	n _{DU}	n _{DOMs}	n _{pmt/DOM}	v _{single} /PMT (kHz)	hit size (bit)	v _{trigger} (Hz)	Event window (µs)
KM3NeT-Ph1, lt	24	18	31	15	50	40	6
KM3NeT-Ph1, <i>Fr</i>	7	18	31	15	50	13	6
KM3NeT-1 Block (Ph2, Fr)	115	18	31	15	50	220	6
KM3NeT-2 Blocks (Ph2, It)	230	18	31	15	50	440	6

Case	DOM thp (Mb/s)	DU thp (Gb/s)	Det thp (Gb/s)	Sel thp (MB/s)	Sel thp (TB/day)	Stored (TB/y)	event size(kB)
KM3NeT-Ph1, lt	23.0	0.4	10.0	1.6	0.13	49.0	7.5
KM3NeT-Ph1, Fr	23.0	0.4	2.9	0.4	0.03	12.0	2.2
KM3NeT-1 Block (Ph2, Fr)	23.0	0.4	48.0	14.0	1.20	440.0	36.0
KM3NeT-2 Blocks (Ph2, It)	23.0	0.4	96.0	44.0	3.80	1400.0	72.0

Acoustic data for positioning

Case	Raw Thp/Sensor (Mb/s)	Raw Thp/DU (Mb/s)	Raw Thp/Detector (Gb/s)	TOA (Mb/s)	Positions (Mb/s)	Storage (TB/y)
Phase 1-It	13.0	240.0	5.7	0.20	0.08	1.10
Phase 1-Fr	13.0	240.0	1.7	0.06	0.02	0.32
1 Block, Ph2 Fr	13.0	240.0	27.0	0.94	0.38	5.20
2 Blocks, Ph2 It	13.0	240.0	55.0	1.90	0.75	10.00

SamplingRateHz = 195.3 × 10³; ResolutionBit = 24; NChannels = 2;

F.Benfenati

Fast Data Acquisition channels

