

Radiation Damage on SiPM for High Energy Physics Experiments in space missions

C. Guerrisi¹, F. Acerbi³, E. Bissaldi², L. Di Venere¹, F. Gargano¹, F. Giordano², S. Loporchio², A. Gola³, S. Merzi³, E. Moretti³, G. Palù³, M. Ruzzarin³.

¹INFN – Sezione di Bari ²Dipartimento Interateneo di Fisica (DIF) dell'Università degli Studi di Bari Aldo Moro e del Politecnico di Bari ³FBK – Fondazione Bruno Kessler

9th International Conference on AstroParticle Physics Rome 23–27 Settembre 2024

Outlines

Silicon Photomultiplier (SiPM)

Overview of SiPMs and how SiPMs work and key features

SiPMs in aerospace

4

Advantages applications of SiPMs in space and groundbased projects.

Radiation damage in silicon 3 SiPMs damage after undergoing radiation

Proton irradiation and its effects on SiPMs

Noise Components 5

How breakdown voltage and dark current are affected

Photo-Detection Efficiency 6

Proton irradiation and its effects on SiPMs PDE

8

Conclusion and Next Steps

with the others by a metal or polysilicon quenching resistor.

A SiPM consists of an array of cells (pixels) connected in parallel. Each cell is a

SPAD (Singe Avalanche Photo Diode) operating in Geiger mode and is coupled

Silicon Photomultiplier (SiPM)

- Size of a microcell = from 10 μ m to 100 μ m ;
- Active areas ranging from to 1x1 mm² to 6x6 mm²;
- Spectral sensitivities from UV to IR (350 nm 650 nm).

Picture from Technology of Broadcom-SiPM and Hamamatsu Technical Note

RICAP 24 - September 23-27, Roma, Italy

SiPMs in aerospace applications

Current and future space missions are starting to employ SiPMs instead of classical Photomultiplier Tubes to read out the scintillator light emission.

Why SiPMs?

- > High gain \rightarrow (10⁵ to 10⁷);
- Compactness;
- > Operated with low bias $\rightarrow 25 70 V$;
- > Insensitive to magnetic fields \rightarrow up to few T;
- Low cost.

R&D and characterization of technologies for groundbased (CTA) and space applications (HERD, NUSES, APT...) on going since >10 years at INFN Bari.

In this work we tested FBK NUV-HD-low crosstalk SiPMs designed for the High Energy cosmic Radiation Detection (HERD) project, produced in 2022 by Fondazione Bruno Kessler (FBK) on Trento.

Challenges: Radiation hardness!

Radiation damage in silicon

Two types of radiation damage in silicon:

 Surface damage due to Ionizing Energy Loss (IEL): accumulation of charge in the oxide (SiO2), traps at Si-SiO2 interface

Generate traps at the Si-SiO₂ interface. Fixed positive oxide charge (Nox):

- →Change in the electric field (Vbd)
- →Accumulation layers

→Increase in leakage current by additional surface current.

Bulk damage: Bulk (Crystal) damage due to Non-Ionizing Energy Loss (NIEL): displacement damage, built up of crystal defects.

Locally distorted Si lattice with new energy states

- → Add donor and acceptor levels
- → Increase DCR

NFN

- → Increase after-pulsing
- \rightarrow Change in charge collection

X-Ray/ electrons E < 300 keV poly-Si AI p epi n⁺ substrate HPK reverse structure

DI FISICA

gamma/ electrons

E > 300 keV

protons / neutrons

Politecnico

di Bari

Radiation Testing on SiPMs

We report the effect on SPADS and SiPM of the irradiation with protons with four 1. fluence levels up to 1×10^{11} p/ cm^2 on SiPMs NUV-HD-lowCT technology, with different 1. cell pitch (40µm and 15µm).

https://arxiv.org/abs/2405.07191

DOI: 10.1109/TED.2016.2516641

SiPM NUV-HD-lowCrossTalk

SiPM 1x1 40 μ m at B dose: scatter plot of the pulse amplitude as a function of t its distance from the preceding event at 6V over-voltage.

Noise components :

- → Direct Cross-talk (DiCT)
- → Delayed Cross-talk (DeCT)
- \rightarrow After-pulsing

→ Primary dark count rate(DCR)

Fluences	Tot fluences [p/cm ²]	Tot fluences [n _{eq} /cm ²]
Α	6,3E+08	9,5E+08
В	1,9E+10	2,9E+10
С	3,5E+09	5,3E+09
D	1,2E+11	1,8E+11

Functional tests on the irradiated samples (SPADs and SiPM) confirmed an increment with a fluence of primary DCR and excluded significant variation in breakdown voltage (V_{BD}).

SiPM NUV-HD-lowCrossTalk

Measured reverse current-voltage curves of NUV-HD SiPM, with 15µm cell size, at different proton irradiation fluences. Breakdown voltage marks the border between the leakage current and the dark current.

- leakage current is considered as current below the breakdown voltage
- dark current is the current above the breakdown.

Visible increment of **dark current** (primary noise) with dose. No change in **leakage current**.

Politecnico di Bari

PDE - Photo-Detection Efficiency

The **Photo-Detection Efficiency** is defined as the probability that a SiPM detects an incoming photon.

$\mathsf{PDE} = \mathsf{FF} \times \mathsf{QE} \times T_P$

- FF → Fill Factor, the geometrical ratio between the active and the total area;
- QE → Quantum Efficiency, the probability that a photon creates an electron-hole pair in a position in silicon from which a carrier can reach the high electric field region;
- **TP** → **PTriggering**, the probability for a primary carrier to trigger an avalanche in the cell. Each term depends on other physical quantities.

PDE -Results

PDE of non irradiated SiPMs at different wavelenghts. We have tested the PDE in a wavelength range close to the one of plastic scintillators.

PDE measured on NUV-HD SiPMs with 15 μ m and 40 μ m cell size at 420nm(a), 435nm(b), 450nm(c) at T amb (~20°C) for different proton doses and no irradiated with and without coating.

PDE measured on non-irradiated SiPM with 15 μ m and 40 μ m cell size at Tamb at different wavelengths.

DCR normalized at $1mm^2$ for the NUV-HD SiPM with 15 μm and 40 μm cell size.

Gain amount of charge flowing per each avalanche, small changes in gain observed.

DCR increases with dose and it is slightly dependent on single cell size. For 15 μ m SPADs the SIPMs DCR value increases of up to 10^2 when the doses increases from 0 to $1.23e^{11}$ p/ cm^2 , due to the increase of the DCR of every single SPAD, which composes the SiPM.

Politecnico

Conclusion

We performed functional tests on the irradiated samples (SPADs), with Protons up to 1×10^{11} p/cm² which confirmed that:

Primary DCR increment;

No relevant modification of all other SiPM functional parameters.

Next step

Study of IEL damage **X-ray irradiation** (energy up to 40 keV) was performed at different doses, up to 100 kGy (in silicon).

Tha

Politecnico di Bari

9th International Conference on Association Rome 23–27 Settembre 2024

a