

Chasing Gravitational Waves with the Cherenkov Telescope Array Observatory

Main authors: Jarred Green, Lara Nava, Barbara Patricelli, Monica Seglar-Arroyo, Fabian Schüssler, <u>Antonio Stamerra</u>, for the CTAO-GW team (*on behalf of the CTAO-Consortium*)

antonio.stamerra@inaf.it (INAF-OAR) antonio.stamerra@cta-observatory.org

RICAP-2024 - Frascati, 24 September 2024

GW interferometers - scientific runs

- Run O1 (2x LIGO) Sept 2015 - Jan. 2016 First GW (BH-BH) event!
- Run 02 (LIGO + VIRGO) 2016-2017; 6 months; Virgo: Aug. 2017 First e.m. counterpart of BNS merger!
- Run o3 (LIGO + VIRGO) -advan. phase February 2019; 1 year - O3a / O3b First NS-BH events! March 27th: stop due to COVID19...
- Run O4 (LIGO+VIRGO+KAGRA) Started 24 May 2023 until 2025, June 9th
- Run O5 AdV+ phase (LIGO+VIRGO+KAGRA + LIGO-India)
 2027-2030

Run O5 matches the current CTAO timeline

https://observing.docs.ligo.org/plan/

GW interferometers - scientific runs

GW e.m. counterparts

Electromagnetic emission

- Binary Neutron Star mergers (BNS) → short GRB suggested (since Eichler+1989), expected (GRB050724) and <u>observed (GW/GRB170817)</u>
 - But 3 long GRBs were associated kilonova (GRB060614, GRB211227, GRB230307A) —> scenario not straightforward
- Black Hole (BH)-NS → short GRB ? e.g. Berger+2014, Barbieri+2020, Rossi+2019 e.g. GRBs 050509B, 061201.
- BH-BH: ?? no EM emission expected (but Loeb+2016, Perna+2016, Murase+2016, Graham et al. 2020,...)
- SN collapse: long GRB ? (LIGO coll. 2014, LVC 2021)

What do we expect in the TeV band?

GWs and GRBs at TeV energies

No detection of GeV-TeV emission from the counterpart of GW170817/GRB170817A

No detection at the maximum of the delayed emission

97.5 GHz (ALMA, ×10⁹)

9 GHz (VLA, ATCA, ×10⁹

(MeerKAT, GMRT, ×10⁹)

1.3 GHz

6

10 keV)

XMM-Newto

 γ_{h}

GRB 190114C

GBM (10-1,000 keV)

10-

10-

10-

10-

 10^{-8}

 10^{-9}

10-10

10-11

cm⁻² ;

(erg

GWs and GRBs at TeV energies

 \bigstar Detection of the TeV (afterglow) emission

✓GRB engine accelerates photons up to TeV Gamma rays up to 12 TeV from the GRB 221009A!

Evidence of a second energetic component

Energy budget and time evolution similar to the optical-X-ray component: TeV flux follows closely the X-ray flux

The Role of Off-axis Observations and structured Jet

GeV-TeV emission is expected from the relativistic outflow (jets)

In GW-counterparts, the jet is seen preferentially off-axis: small Lorentz factor

Intensity weaker 10⁻⁴ to 10⁻⁶ times than on-axis emission

 \Box light curve <u>delayed</u> (hours/days/months, depending on θ_{view})

CTAO

On-axis observer: standard GRB

flux

The Role of Off-axis Observations and structured Jet

GeV-TeV emission is expected from the relativistic outflow (jets)

In GW-counterparts, the jet is seen preferentially off-axis: small Lorentz factor

Intensity weaker 10⁻⁴ to 10⁻⁶ times than on-axis emission

Iight curve delayed (hours/days/months, depending on θ_{view})

CTAO

On-axis observer: standard GRB

CTAO performances: Sensitivity to transient and flaring sources

Extended "spectral arm leverage" High statistics (=precision) on flares

The Cherenkov Telescope Array Observatory

Northern site: La Palma Alpha: 4 Large, 9 Medium Omega: 4 Large, 15 Medium

CTA in a nutshell

Energy range: 20 GeV to 300 TeV Sensitivity improvement: ×5 to ×20 (~mCrab) Angular resolution: 3 arcmin at 1 TeV Field of view: ~8 deg (diameter) Energy resolution: 7% at 1 TeV

Southern Site: Paranal, Chile Alpha: 14 Medium, 37 Small + 2 Large* Omega: 4 Large, 25 Medium, 70 Small

*CTA+ Italian project NRRP

A Dedicated Study on the CTAO's Prospects on GW Follow-ups

Compute the joint GW and CTAO detection rates from binary neutron star (BNS) mergers associated to GRBs (GW-GRBs)

Explore the parameter space of the GW-GRBs detectable by CTAO

- Physical parameters (luminosity, jet opening angles and jet orientation, spectral slope)
- + Observational parameters (time delays, exposures)

Optimise the observing strategy

- Maximise the detection rate
- Maximise the physical interpretation return
- Evaluate the amount of observing time

An evolved multi-messenger scenario on GWs and TeV-GRBs

Simulation of BNS mergers and GW signal in local universe

Synthetic GW-GRBs Phenomenological model of VHE emission of short-GRB

Simulation of CTAO response (set of IRFs*) *gammapy, ctools*

Observation optimisation and scheduler CTAO observing strategy

B. Patricelli et al., 2022 12

CTAO

- Gravitational wave catalogue of simulated binary neutron star (BNS) mergers from *Petrov et al.* 2022 for O5 (O6)
- ~2300 (8160) compact binaries in O5 (O6*) detected

Simulation of BNS mergers and GW signal in local universe

Synthetic GW-GRBs Phenomenological model of VHE emission of short-GRB

Simulation of CTAO response (set of IRFs*) gammapy, ctools Observation optimisation and scheduler CTAO observing strategy

 \star O6 will have same sensitivity as O5 with the addition of LIGO-India

Synthetic GW-GRBs Phenomenological model of VHE emission of short-GRB

Phenomenological simulation of afterglow emission from short GRBs, built on short-GRB detections, GRB detections at TeV energies and flux upper limits by IACTs and X-ray observations

- Jet opening angle inferred from short-GRBs seen on-axis, average:~14deg
- Viewing angle from the inclination of the BNS
- Lightcurve: follows deceleration phase + similar temporal decay as in X-rays
- **Spectrum**: Photon index ~-2; Density of the external medium ~0.1 cm⁻³
- Jet structure: Gaussian distribution for both energy and Lorentz factor

The All And All And

First preliminary results - 1. detectability

Simulation of CTAO response (set of IRFs*) gammapy, ctools

- Detection expectations by CTAO as a function of delay and exposure
- Based on the 2307 simulated GW-GRBs and the CTAO sensitivity (Alpha configuration)

- Optimised follow-up strategy for detection: the exposure is tuned to detect the source (Patricelli et al. 2018).
- Realistic observing conditions for CTAO are considered (Seglar-Arroyo et al. 2019)

Simulation of E GW signal in

- The Scheduler iterates on the best visible positions. If the true source position is covered, by construction, it is detected.
- Based on Tilepy code (M. Seglar-Arroyo et al. APJS 2024)

Simulation of CTAO response (set of IRFs*) gammapy, ctools Observation optimisation and scheduler CTAO observing strategy

M. Seglar-Arroyo et al. - APJS - 2024

First preliminary results -2. Realistic follow-ups and detections

- Followed up GW-GRB events: 8% of the total population
- 4.5% of follow-ups covered the true location of the source
- on-axis events: 18% followed up; 10% covered the true location
- off-axis events: 7% followed up; 4% covered the true location

Observation optimisation and scheduler CTAO observing strategy

Realistic observing conditions for CTAO are considered (duty cycle, visibility).

No subarrays, and only North or South array

GW FOLLOW-UPS WITH CTAO

✓ A new GW and TeV-GRB landscape emerged → an expanded CTAO's science program

✓ Plethora of GW triggers expected → Observing strategies and optimised follow-up observations required

✓ Groundwork laid with GW-GRB simulation chain for BNS during the LIGO-Virgo-KAGRA scientific run O5 (2027-2030)

CTAO key player in the transients and GW follow-ups!

Further effort on prospects of CTAO with the new generation of GW interferometers, like the Einstein Telescope and Cosmic Explorer

The era of gravitational waves

GW150914 (BBH)

Einstein equation

Perturbation: "strain"

 $R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R = \frac{8\pi G}{c^4}T_{\alpha\beta}$

Solution h = strain

Plus other parameters: Spin, orientation, mass ratio...

The GW emission from a binary compact system (BBH, BNS, NS-BH)

Normalized amplitude

TEV Transients with IACTs

Association GW-e.m. counterpart: GW170817/GRB170817

"At 12:41:06.47 UT on 17 August 2017, the Fermi Gamma-Ray Burst Monitor triggered and located GRB 170817A (trigger 524666471 / 170817529).

LIGO

Time from merger (seconds)

L_{iso} ~5x10⁴⁶ erg/s

TeV instruments in operation

MAGIC (La Palma) 2 x 236 m² (since 2003 / 2009)

LHAASO

VERITAS (Arizona) 4 x 110 m² (since 2007)

CTAO

HAWC (2015)