


AGILE activity for GWy-ray counterpart search

Sep. 24, 2024

Verrecchia F. (INAF/OAR, ASI/SSDC), Casentini C. (INAF/IAPS), on Behalf of the AGILE Team

HARD X-RAY IMAGER SUPER-AGILE (SA)

Energy Range: 18-60 keV

SILICON TRACKER

GAMMA-RAY IMAGER (GRID)

Energy Range: 30 MeV - 30GeV

(MINI) CALORIMETER

Energy Range: 0.3-100 MeV

AGILE had unique combination of X-ray and gamma-ray detectors for GW searches

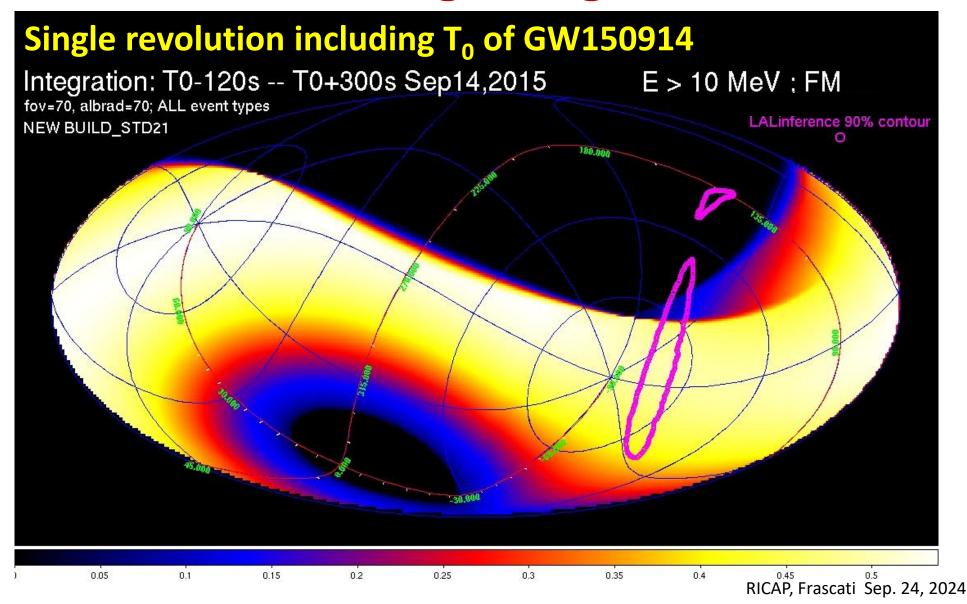
two co-aligned detectors in hard X-rays (20-60 keV; super-A) and gamma (30 MeV-10GeV; GRID) + MCAL (0.4-100 MeV) + Anticoincidence (80 – 200 keV)

Operational from April 23rd, 2007 up to January 18th, 2024;

AGILE in spinning mode

- Very large field of view (~2.5 sr).
- Coverage of 70% -- 80% of the whole sky in about 7min.
- Very fast ground segment: first Quick Look analysis (on contact basis) available ~30 min after telemetry download.

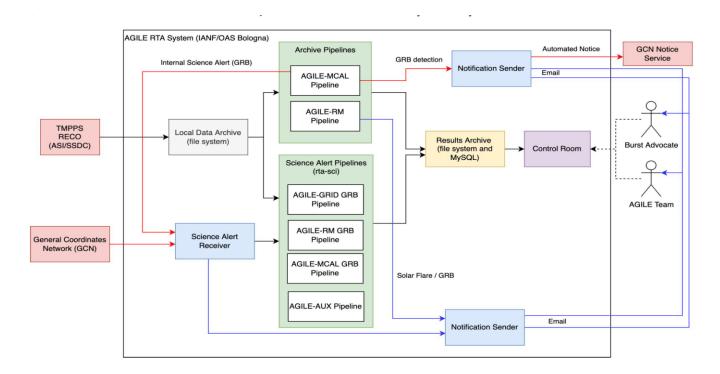
Very suitable instrument to perform all-sky searches


for short transient γ -ray sources and γ -ray counterparts to

multi-messenger transients (GW and neutrinos).

AGILE and GW astrophysics: summary

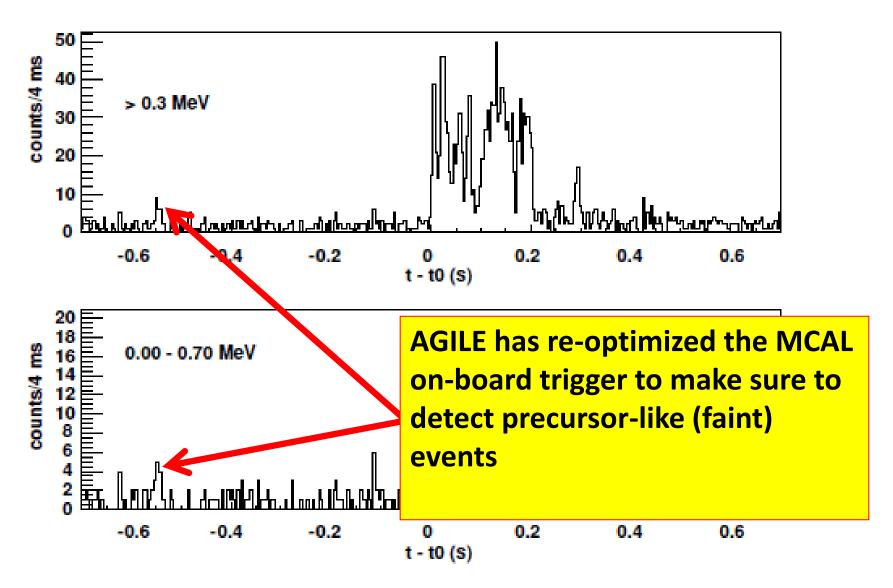
- Archival analysis for GW150914 (no MoU: Tavani et al. 2016, TEST case for development of GW dedicated procedures
- Preparation to O2 in 2016: developed first RTA pipeline
- Participation to O2 with MoU:
 - GW170104: Verrecchia et al. 2017a
 - GW170817: Verrecchia et al. 2017b
- Preparation to O3
 - New MCAL processing pipelines
- Participation to O3: public alerts
- Archival analysis: reanalysis of data for the GWTC-1 catalog → Ursi et al.
 2022a
- MCAL processing pipelines results -->New GRB Catalog: Ursi et al. 2022b
- Preparation and participation to O4
- Work in progress: archival reanalysis for O3 & O4a events


AGILE activity for GW e.m. search: the beginning

AGILE real-time analysis system

The Real-Time Analysis (RTA) pipeline developed by INAF/OAS and SSDC, as a follow-up of the first GW data analysis and GRB previous analyses:

- Runs pipeline either on external trigger or to execute source blind search
- Distributed alerts system between OAS and SSDC
- Fast reactions on transient alerts external notification
- UPDATED since 2016 various times!


AGILE and GW astrophysics: 02

Preparation to O2:

- Setup improved performances for GW collaboration
- MCAL on board upgraded configuration
- very fast reaction to external GW trigger: <u>AGILE real-time</u>
 <u>analysis «GW» pipeline</u> @OAS Bologna and SSDC
- MCAL processing pipelines for "sub-threshold events"
 →automatic alerts
- great potential for fast discovery of gamma-ray transients associated with NS-NS, NS-BH
- AGILE GW-Team monitoring shifts (24/7) during the O2, but also O3 and O4a GW LIGO-Virgo observing runs
 =>shift procedures REVISED at EACH run

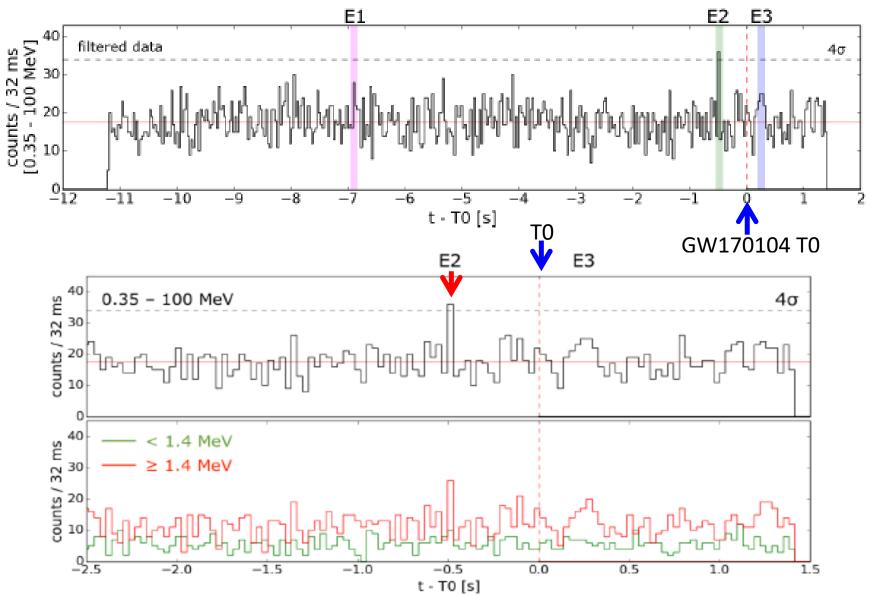
O2 Preparation: AGILE-MCAL GRB090510 light curve

goal GRB090510 pre-cursor like bursts

AGILE search for gamma-ray counterparts of GW events: in O1 and O2

GW ID	AGILE GCN #s	% coverage of 90% c.l. contour	NEAREST EXP.	Comments on Prompt and papers
150914		0 %	+330	Prompt just missed; Tavani et al. 2016
151226		30 %	0	Partially covered;
170104	20375, 20395	36 %	0	Partially covered GRID, covered by MCAL; Verrecchia et al.2017a
170608	21224, 21228	40 %	0	Partially covered GRID, covered by MCAL for a few tens of ms;
170729		0 %	+150	Prompt just missed;
170814	21477, 21482	0 %	+ 500	Not covered (1st with Virgo data);
170817	21525,21526, 21562, 21785	0 %	+ 930	OT NOT covered; Verrecchia et al. 2017b

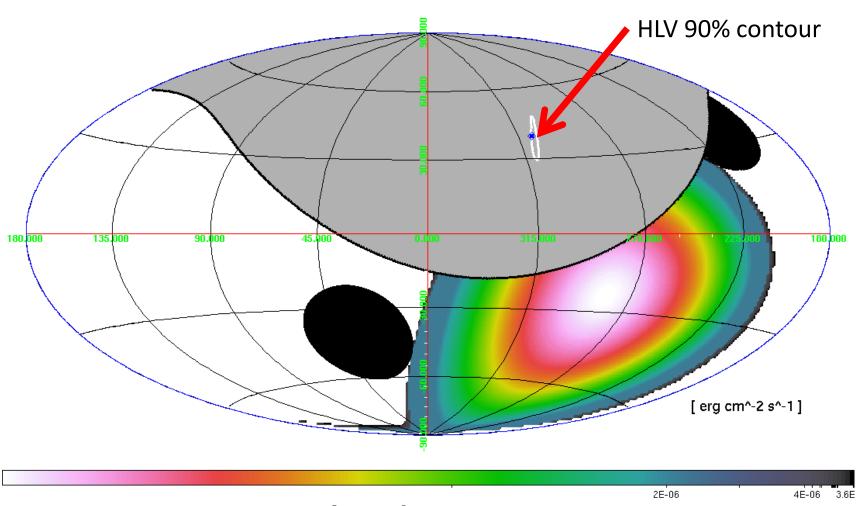
BLUE: Binary NS merger; RED: prompt covered


Space Science Data Center

O2 Summary:

- AGILE in the MoU since Nov 2016: promptly reacted to all GW candidate events communicated by LIGO-Virgo in O2 with reaction time of 2-3 hrs (including manual refined validation)
- A possible AGILE-MCAL gamma-ray transient candidate found as counterpart of GW170104 (Verrecchia et al., ApJL 847, 2017)
- AGILE and <u>GW170817</u>: first γ -ray instrument with exposure on the localization region starting at \sim T₀ + 930s (Verrecchia et al., ApJL 850,2017)
- AGILE observations provided the fastest response and among the most significant upper limits above 50 MeV to all GW events detected in O2

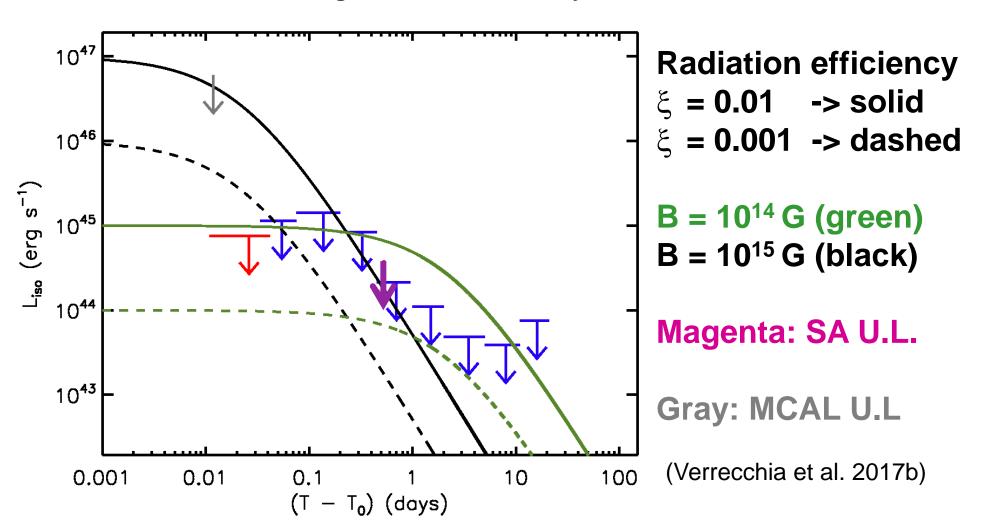
GW170104: an MCAL candidate event



Careful FAR estimation, only E2 is a good candidate but post-trial Prob. resulted to be below 3σ (Verrecchia et al. 2017a)

RICAP, Frascati Sep. 24, 2024

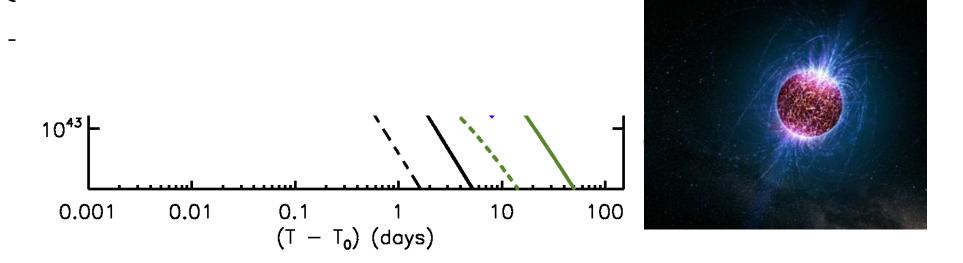
GW170817


AGILE exposure at trigger time (-2 / +2 sec)

In E > 30 MeV energy band

GW170817: AGILE crucial limits on magnetar emission:

HE emission from a magnetar remnant left by NS-NS coalescence model:


(GBM GRB170817A spectrum cutoff out of MCAL band)

GW170817: AGILE crucial limits on magnetar emission:

HE emission from a magnetar remnant left by NS-NS coalescence model:

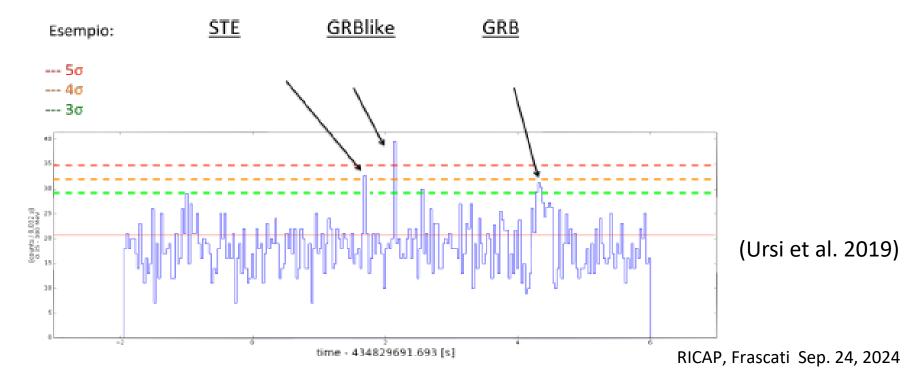
the remnant of **GW170817- GRB170817A**

(GBM GRB170817A spectrum cutoff out of MCAL band)

Preparation of O3 GW run:

- AGILE fast and unique hard X/γ-ray coverage (good TM budget) ->IF possible!
- O3 LIGO-Virgo run: Public LV alerts! So need to increase speed in results publication
- Improved performance with NEW MCAL pipeline developed for "sub-threshold events" btw 5 ÷ 6 sigma pre-trial significance
- GW pipeline also upgraded: revised products/functionalities
- O3: reduced human vetting of detections: more use of automatic results and more automatic results!
- MCAL-GRB: automatic detection and notification to community with notices: operative (> May 2019)

=>Contribution to LIGO-Virgo O3 run!


AGILE-MCAL, new detection pipeline

MCAL automatic detection pipeline: 4 binning timescales (16, 32, 64, 128 ms), 4 phase shifts.

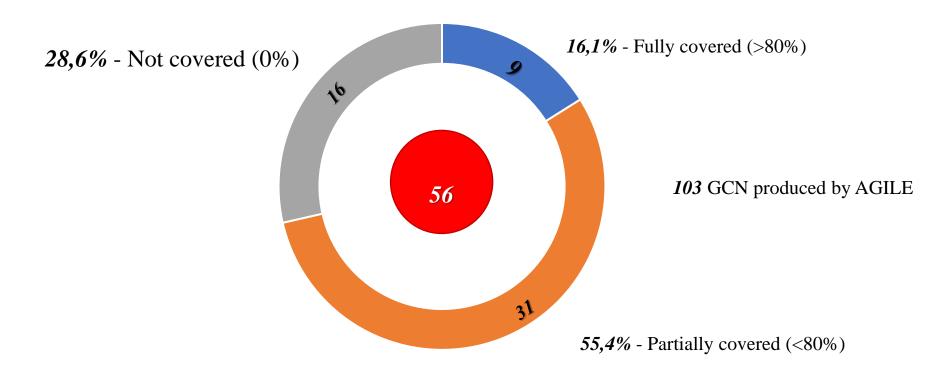
Three event classes: revised (see archival analysis in Ursi et al. 2019)

- 1) standard GRBs (short & long),
- 2) GRB-like (single+S/N >6 σ),
- 3) Sub-Threshold Events (STEs, single+S/N>=5 σ).

differences among the three classes

AGILE search for gamma-ray counterparts of GW events in O3

GW ID	AGILE GCN #	% coverage of 90% c.l. contour	NEAREST EXP.	Comments on Prompt
190408an	24063, 24071,24080	0 %	+100	Prompt just missed;
190412m	24100, 24110	0 %	-700	Occulted;
190421ar	24140, 24143	0 %	+450	Not covered, SAA;
190425z	24180, 24186	0 %	+100	Prompt just missed by GRID;
190426c	24245, 24246	70 %	0	Partially covered;
190503bf	24379,24382	4 %	0	Prompt partially covered, occultation;
190510g	24437,24457	60 %	0	Not covered;
190512at	24507, 24519	0%	+840	SAA+ occultation + Sun contraints;
190517h	24572, 24574	0 %	-100	Prompt just missed;
190519bj	24603, 24604	70 %	0	Partially covered;
190521g	24623, 24626	60 %	0	Partially covered;
190521r	24636, 24638	40 %	0	Partially covered;
••••				••••


17 BLUE: Binary NS merger; RED: prompt covered

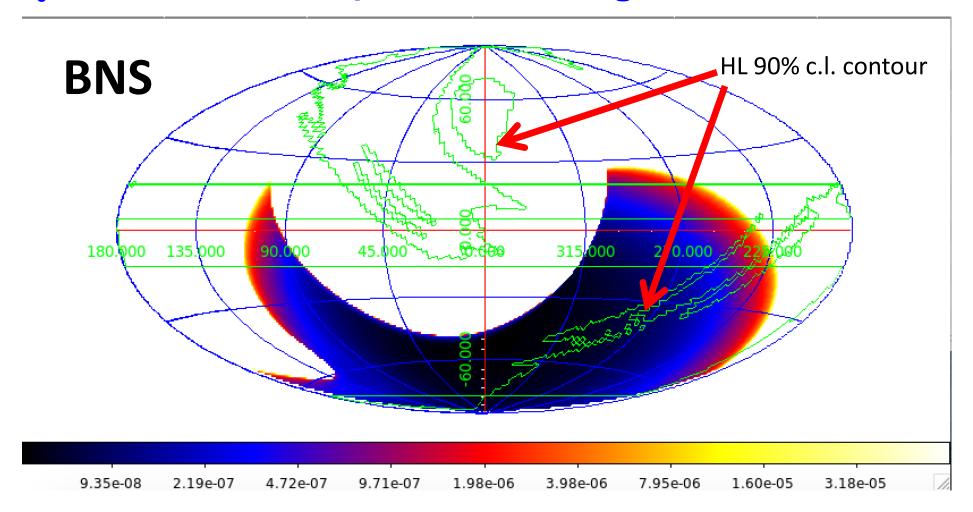
AGILE search for gamma-ray counterparts of GW events in O3

GILE RT Alert	Control Room LIGO Notices ▼	Pipes▼ Science Alerts▼	Monitoring ▼ GW Team ▼	Help▼ 2024-09-22T	14:25:15 (UTC)			
						Mass Gap:		Alert Checked ✓
LIGO	2020-03-16T21:57:56.157	511480676.157206	2020-03-16T22:08:25	2003160210	1	ID: S200316bj BNS/NSBH/BBH: 0/0/0 FAR: 7.1e-11 Has NS: 0 Has Remnant: 0 Mass Gap:	Sig:	Prompt Analysis Full Analysis Open Run Open Results Alert Checked
LIGO	2020-03-16T21:57:56.157	511480676.157206	2020-03-16T22:01:50	2003160210	0	ID: S200316bj BNS/NSBH/BBH: 0/0/0 FAR: 7.1e-11 Has NS: 0 Has Remnant: 0 Mass Gap:	Sig:	Prompt Analysis Full Analysis Open Run Open Results Alert Checked
LIGO	2020-03-11T11:58:53.398	511012733.397786	2020-03-13T15:07:04	2003110207	3	ID: S200311bg BNS/NSBH/BBH: 0/0/1 FAR: 8.9e-26 Has NS: 0 Has Remnant: 0 Mass Gap:	Sig:	Prompt Analysis Full Analysis Open Run Open Results Alert Checked
LIGO	2020-03-11T11:58:53.398	511012733.397786	2020-03-11T12:16:20	2003110207	2	ID: S200311bg BNS/NSBH/BBH: 0/0/1 FAR: 8.9e-26 Has NS: 0 Has Remnant: 0 Mass Gap:	Sig:	Prompt Analysis Full Analysis Open Run Open Results Alert Checked
LIGO	2020-03-11T11:58:53.398	511012733.397786	2020-03-11T12:10:15	2003110207	1	ID: S200311bg BNS/NSBH/BBH: 0/0/1	Sig:	Prompt Analysis Full Analysis

LIGO-Virgo O3 run

What AGILE observed

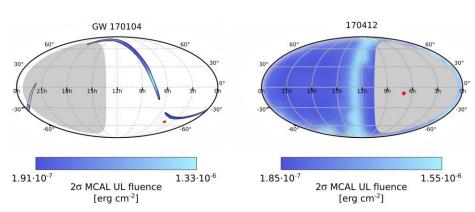
NB: event sky coverage at T0

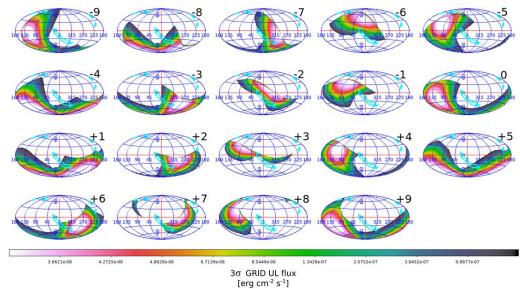

example: S190425z

 $T_0 = 08:18:05 \text{ UT}, 25 \text{ April}, 2019 Integration (+100 / +200 sec)$

BNS

example: S190425z

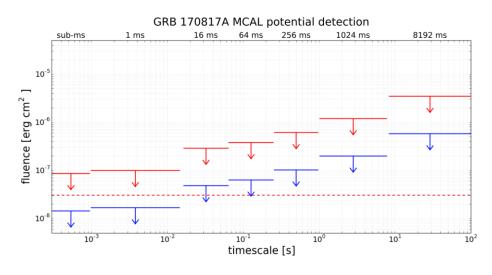

 $T_0 = 08:18:05 \text{ UT}, 25 \text{ April}, 2019 Integration (+100 / +200 sec)$

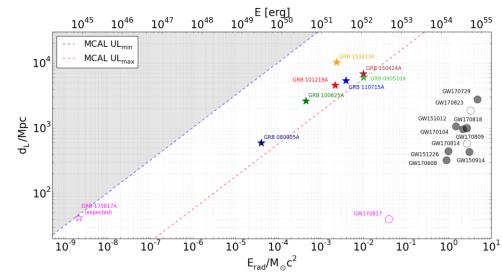

3-sigma upper limit (E > 50 MeV) \sim 5.0 x 10⁻⁸ erg cm⁻² s⁻¹

AGILE & GW: archival analyses

- AGILE activities on GW after O2: archival data re-analysis of previously published events, following the 1° GW catalog (GWTC-1), with standard new processing on updated event parameters
- => paper on reanalysis of events included in GWTC-1, Ursi et al. 2022, published on ApJ:
- Reprocessing of all MCAL data within -/+100s around event T0s

- No detection => extraction of fluence UL for each trigger logic timescale




- GRID data check added: GRID coverage of the updated LV contours & UL evaluation

AGILE & GW: Ursi et al. 2022

• Check GRB170817 possible detection with MCAL data if not occulted by the Earth: minimum/maximum fluence UL

 Comparison of GW released energies and MCAL detected GRBs published in the recent new GRB catalog (Ursi et al. 2022, ApJ, 924, 80): distance vs energy

AGILE search for gamma-ray counterparts of GW events in O4

• O4a timeline: start on May 24th 2023 – end on January 18th, 2024

LVK status BEFORE start: good for a LIGO and Virgo: improved sensitivities, LIGO starting at 160 Mpc (140 end of O3), Virgo 80 (50) and further enhancement towards the end. KAGRA starting 1-3 Mpc (0.7?) but enhancement during O4 is uncertain.

Prospect for O4 were: NOT VERY different from O3, with expected improved number of events, but not very much in BNS

=>and it has been **CONFIRMED**: only 3 mergers including a NS in O4a

AGILE search for gamma-ray counterparts of GW events in O4

• O4a timeline: start on May 24th 2023 – end on January 18th, 2024

LVK status BEFORE start: good for a LIGO and Virgo: improved sensitivities, LIGO starting at 160 Mpc (140 end of O3), Virgo 80 (50) and further enhancement towards the end. KAGRA starting 1-3 Mpc (0.7?) but enhancement during O4 is uncertain.

Many BBH expected

=>Strategy: we decided not to publish ULs circular for BBH, check them but write a circular just in case of interesting signal

AGILE GW Flare Advocate Team:

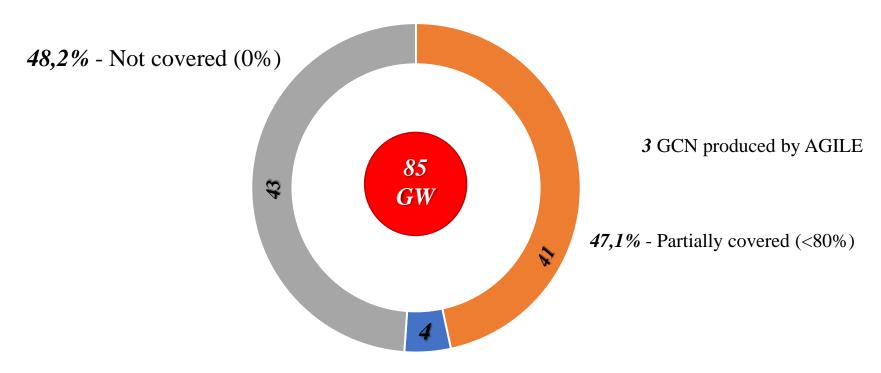
- STRATEGY REVISION based on GW event type: DISCARD BBH unless specific info available from EM community or interesting candidate in AGILE data
- Expert FAs exited the group, new personnel found and defined revised training based on simplified requirements

Cardillo M., Lucarelli, F. ->exited activity

Ciabattoni, A.; Cattaneo, P.; Panebianco, G.; Di Piano, A., Cutrona, F. (partial)

- Add or REVIEW refined analysis tasks: develop updated tasks for FAs manual analysis (first released on 2022), more versatile and friendly
- REVIEW duty shifts: procedures and new staff training; manuals and documentation, video tutorial and training activities
- SSDC web reporting interactive tool for transients, GW/GRB and others: improved in O4

Version 1.3

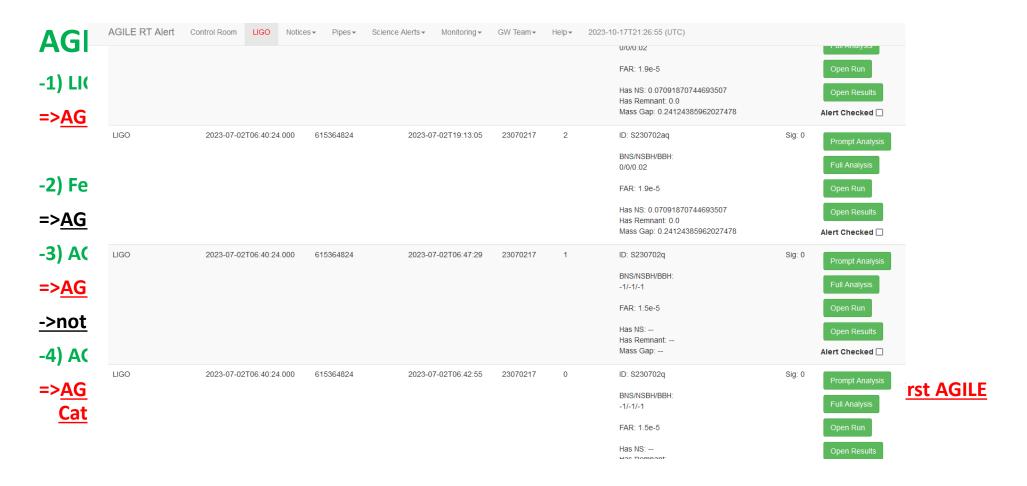

verrecchia (Logout)

Insert New Doc

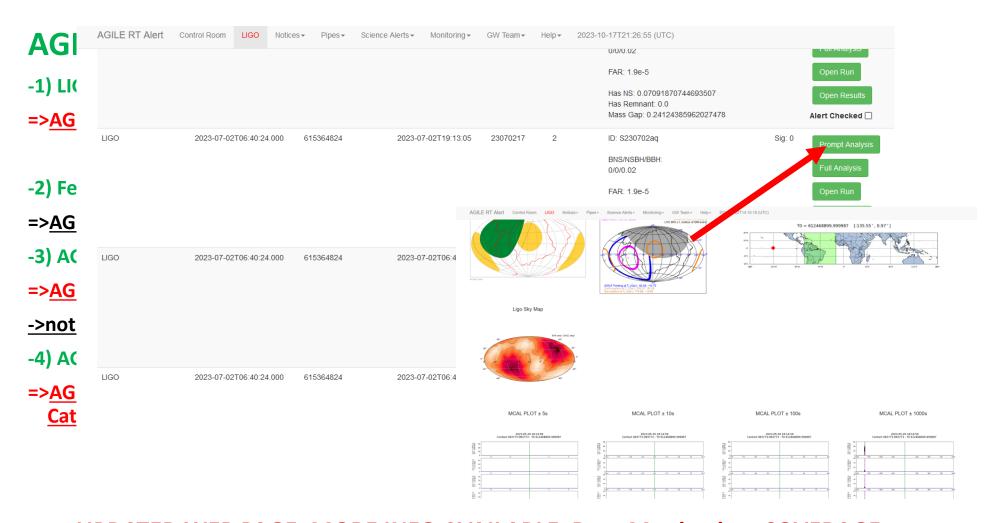
	Type: GW V	Column visibility Excel								Search:			
uthors	Source	File	Notes	On Duty	Event StartDate (T0)	Event Type	♦ FAR ♦	GCN +	AGILE Pipeline	Primary Detector	MCAL T0 Coverage	GRID T0 Coverage	
	S240109a		LVK O4, Sig=1, area=24219 deg^2; No data in MCAL, no data in GRID.	Casentini	2024-01-09 05:04:31.14	BBH (99%)	7.346E-9	Notices Circulars	稅 HOST2 稅 SSDC	MCAL	yes	yes	
	S240109a		LVK O4, Sig=1, area=28048 deg^2; No data in MCAL, no data in GRID.	Casentini	2024-01-09 05:04:31.14	BBH (99%)	7.346E-9	Notices Circulars	HOST2	MCAL	yes	yes	
	S240107b		LVK O4, Sig=1, area=4143 deg^2; No data in MCAL, no exposure in GRID.	Longo	2024-01-07 01:32:15.59	BBH (97%), Terrestrial (3%)	5.834E-8	Notices Circulars	HOST2	MCAL	yes	no	
	S240104bl		LVK O4, Sig=1, area=24219 deg2. GRID=only a small fraction of GW area is inside GRID FoV. Earth is	Panebianco	2024-01-04 16:49:32.170	BBH (99%)	3.6E-17	Notices Circulars	的 HOST2	RM	no	yes	
	S231231ag		LVK O4, Sig=1, area=27061 deg^2; MCAL No data. No valid GRID data.	Pilia	2023-12-31 15:40:16.20	BBH (>99%)	8.354E-15	Notices Circulars	HOST2	MCAL	no	no	
	S231226av		LVK O4, Sig=1, area=199 deg^2; No data in MCAL. Some exposure in GRID.	Foffano	2023-12-26 10:15;20.05	BBH (>99%)	0.0	Notices Circulars	HOST2	MCAL	no	no	
	S231224e		LVK O4, Sig=1, area=394 deg^2; No data in MCAL, no exposure in GRID.	Di Piano	2023-12-24 02:43:21.06	BBH (99%)	1.5E-9	Notices Circulars	的 HOST2	GRID	no	no	
	S231223j		LVK O4, Sig=1, area=3520 deg^2; No data in MCAL, no exposure in GRID.	Verrecchia	2023-12-23 03:28:36.69	BBH (>99%)	1.111E-9	Notices Circulars	HOST2	MCAL	no	no	
	S231213ap		LVK O4, Sig=1, area=1469 deg^2; MCAL No data. GRID no exposure	Pilia	2023-12-13 11:14:17.914	BBH (>99%)	6.335E-10	Notices Circulars	粉 HOST2	MCAL	yes	no	
	S231206cc		LVK O4, Sig=1, area=342 deg^2; MCAL: no data (SAA?; no coverage within -/+ 1000s), ULs; GRID: 0 %	Verrecchia	2023-12-06 23:39:01.07	BBH (>99%)	1.932E-35	Notices Circulars	的 HOST2	GRID	no	no	
	S231206ca		LVK O4, Sig=1, area=2335 deg^2; data gap (No valid data) at T0, MCAL: no data (nearest trigger at	Verrecchia	2023-12-06 23:31:34.02	BBH (>99%)	3.168E-10	Notices Circulars	稳 HOST2 给 SSDC		no	no	
	S231129ac		LVK O4, Sig=1, area= 3089 deg^2; MCAL: triggered data found a 4.5 sigma signal at T_mcal =	cattaneo	2023-11-29 08:17:45.06	BBH (99%), Terrestrial (1%)	1.765E-8	Notices Circulars	税 HOST2	MCAL	yes	no	
	\$231127cg		LVK O4, Sig=1, area=3413 deg^2; MCAL: triggered data found a 4.1 sigma signal at T0+6, ULs; RM:	Casentini	2023-11-27 16:53:00.87	BBH (>99%)	5.815E-9	Notices Circulars	的 HOST2	GRID	no	yes	
	S231123cg		LVK O4, Sig=1, area=2714 deg^2; MCAL: nearest trigger at ~ T0-800s, ULs; RM: no signif.peak.	Ciabattoni	2023-11-23 13:54:30	BBH (>99%)	3.168E-10	Notices Circulars	的 HOST2	MCAL	no	no	
	S231119u		LVK O4, Sig=1, area=5211 deg^2. AGILE in SAA	Pittori	2023-11-19 07:52:48.51	BBH (95%), Terrestrial (5%)	7.431E-8	Notices Circulars	HOST2	MCAL	no	no	
	S231118an		LVK O4, Sig=1, area=287 deg^2. AGILE in SAA	Piano	2023-11-18 09:06:02.31	BBH (74%), Terrestrial (24%), NSBH (1%)	7.476E-8	Notices Circulars	的 HOST2	MCAL	no	no	

LIGO-Virgo O4a run

What AGILE observed



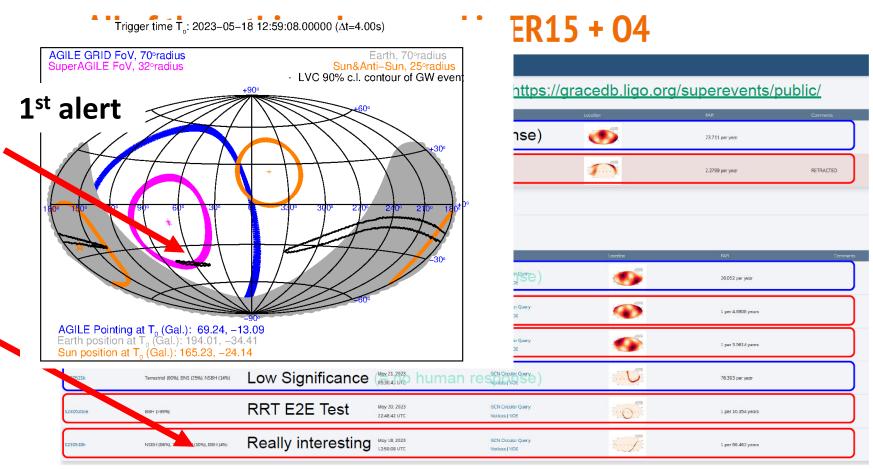
4,6% - Fully covered (>80%)


NB: event sky coverage at T0

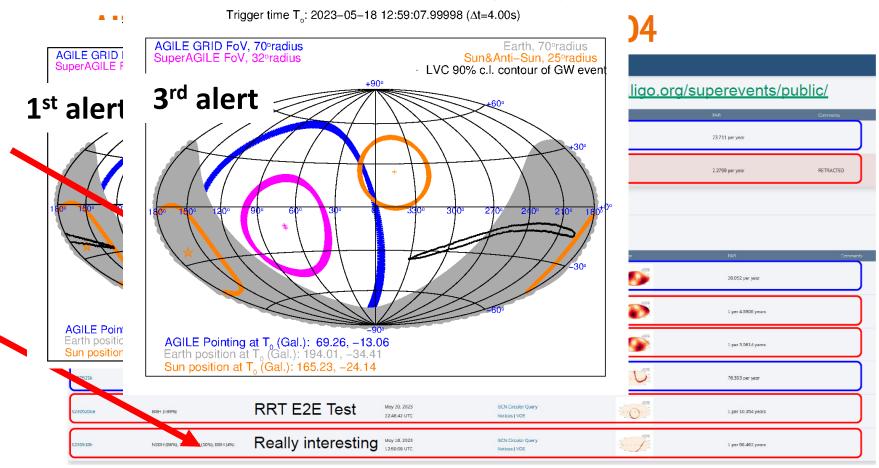
AGILE GW/GRB pipelines (RTA):

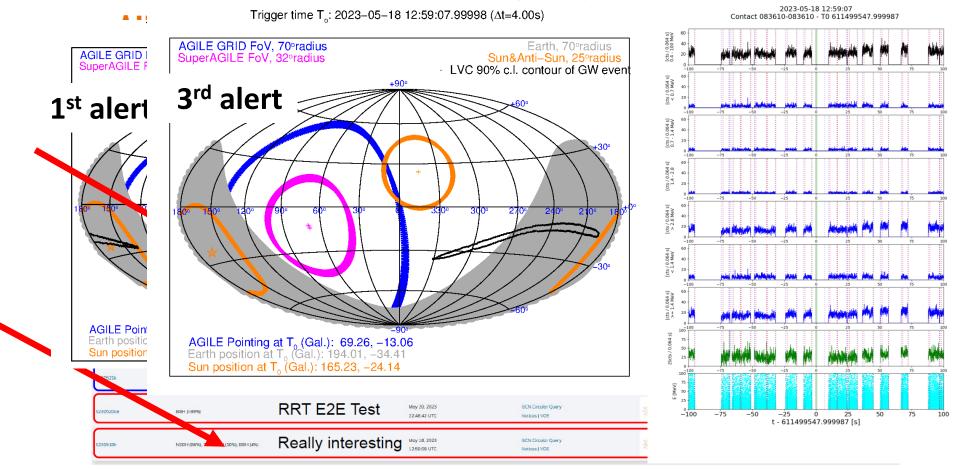
- -1) LIGO/Virgo Notices & Circulars:
- =>AGILE-GW pipeline on LVC triggers: main updates on detection results revision
- -2) Fermi, Swift, IceCube, FRB, Notices & Circulars:
- =>AGILE-GW pipeline on GRB triggers
- -3) AGILE/MCAL detection pipeline:
- =>AGILE-MCAL GRB & Solar flares detection pipeline on AC Top
- ->notices on GRB (already in O3)
- -4) AGILE/RM detection pipeline:
- =>AGILE-RM short transients (GRB et al.) & Solar flares detection RMs pipeline ->applied in the First AGILE Catalog of solar flare (Ursi et al. 2023)

UPDATED WEB PAGE: MORE INFO AVAILABLE, Data Monitoring, COVERAGE, Solar Flares

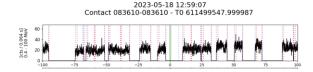

UPDATED WEB PAGE: MORE INFO AVAILABLE, Data Monitoring, COVERAGE, Solar Flares

• ER15: First event is one of the most interesting! May 18th, NSBH (86%),


All of these things happened in ER15 + O4

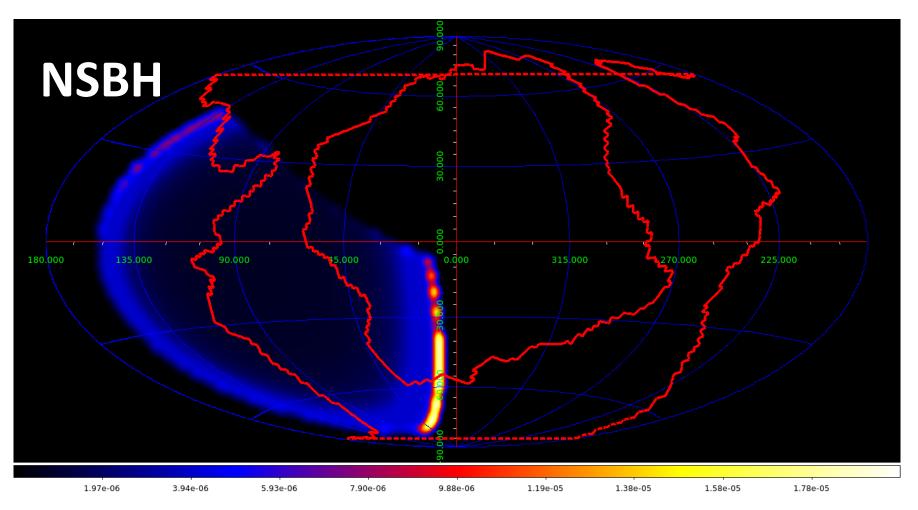

• ER15: First event is one of the most interesting! May 18th, NSBH (86%),

• ER15: First event is one of the most interesting! May 18th, NSBH (86%),


• ER15: First event is one of the most interesting! May 18th

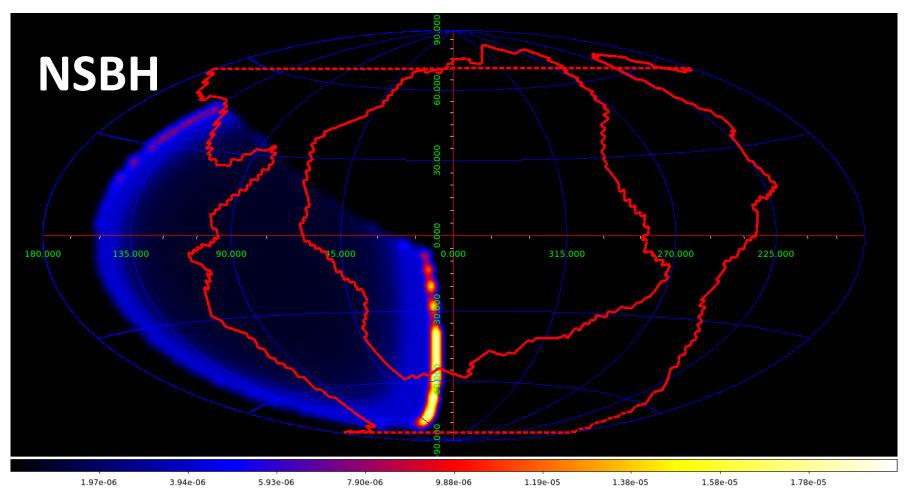
• ER15: First event is one of the most interesting! May 18th

AGILE GRID I SuperAGILE F


AGILE GRID FoV, 70°radius SuperAGILE FoV, 32°radius SuperAGILE FoV,

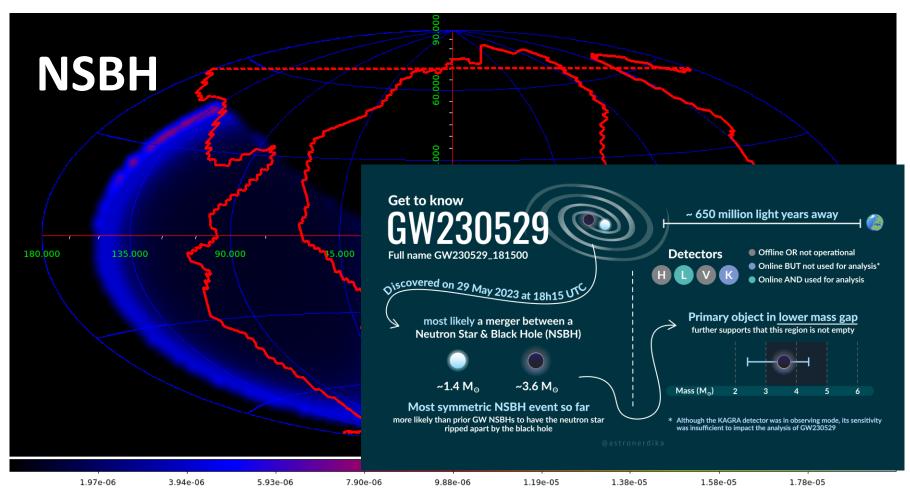
Candidate detections: need very careful False Alarm Rate (FAR) and False Alarm Probability calculation (FAP)

example: S230529ay/GW230529


 $T_0 = 18:15:16.75 \text{ UT}, 29 \text{ May}, 2023 Integration (-2 / +2 sec)$

3-sigma upper limit (E > 50 MeV) $\sim 7.7 \times 10^{-6} \text{ erg cm}^{-2} \text{ s}^{-1}$

example: S230529ay/GW230529


 $T_0 = 18:15:16.75 \text{ UT}, 29 \text{ May}, 2023 Integration (0/ +100 sec)$

3-sigma upper limit (E > 50 MeV) $\sim 3.3 \times 10^{-8} \text{ erg cm}^{-2} \text{ s}^{-1}$

example: S230529ay/GW230529

 $T_0 = 18:15:16.75 \text{ UT}, 29 \text{ May}, 2023 Integration (0/ +100 sec)$

3-sigma upper limit (E > 50 MeV) \sim 3.3 x 10⁻⁸ erg cm⁻² s⁻¹

AGILE contribution to GW e.m. counterpart search

- AGILE ended its journey... on Feb. 13rd, 2024
- AGILE participation in GW EM counterpart search started in 2016: fully integrated in a network of multi-frequency observers from ground and space; with MoU and in public alerts context
- Enhanced detection capabilities of short (and long) transients, especially for GW events (and neutrinos), also GRB and FRB (see Casentini's talk)!
- RTA pipeline system
- Participation to O2, O3 and O4a: real time reaction; no detection but constraining U.L.s and some candidate published and other to be revised
- Archival works: first on 2022 on O1,O2 events; more under study on O3 and O4 events, on new GWTC-2.1 (O3a) and 3.0 (O3b) catalog events or further updates, dedicated to mergers including NS
- check also the AGILE APP ("AGILEScience")!

AGILE sky scarning

