

ale di Fisica Nuclear

SEZIONE DI LECCE

Multimessenger studies at the Pierre Auger Observatory

Emanuele De Vito^a for the Pierre Auger Collaboration^b ^aUniversità del Salento and INFN Lecce ^bObservatorio Pierre Auger, Av. San Martin Nórte 304, 5613 Malargüe, Argentina

Multi-Messenger astrophysics

Ultra-High-Energy Cosmic Rays observatories have sensitivity to photons and neutrinos in a wide energy range

It is possible to do diffuse and targeted searches of neutral messengers at the highest energies

Unique contribution to Gravitational Wave follow-ups in the multi-wavelength search in combination with mergers

The Pierre Auger Observatory

Surface Detector (SD):

1600 Water Cerenkov Detectors at 1.5 km (~3000 km²) + 31 stations at 0.75 km
 measure particle density at the ground

Fluorescence Detector (FD):

 – 24 telescopes in 4 sites (FoV 1° - 30°) + 3 high elevation telescopes (FoV 30° - 60°)

– longitudinal profile with a calorimetric measurement

Precise measurement using **hybrid (SD+FD)** technique

AugerPrime adding new detectors (SSD, Radio antennas, Underground Muon Detectors) and faster electronics to increase our sensitivity

UHE Photon induced air showers

Photons upper limits

PoS(ICRC2023)238 SD 433 m + UMD Ap. J. 933 (2022)125 SD 750 m + HeCo arXiv:2406.07439 Auger hybrid (Paper accepted) PoS(ICRC2019)398 Auger SD 1500 m

- Limits across 4 decades in energy
- Disfavouring top-down models
- Constraining mass and lifetime of dark matter particles
- Constraining cosmogenic fluxes (need more exposure)
- With Auger Phase II more information to better discriminate the primary particle

See also P.Savina presentation to have more details

GW follow-up photon searches

$(D_{\rm L} < \infty$	and	$\Omega_{50\%} < 100 \mathrm{deg}^2)_{\mathrm{short}}$	"class I"
$(D_{\rm L} < \infty$	and	$\Omega_{50\%} < 20\mathrm{deg}^2)_\mathrm{long}$	"class II"
$(D_{\rm L} < 180{\rm Mpc}$	and	$\Omega_{50\%} < 100 \rm deg^2)_{\rm long}$	"class III"
$(D_{\rm L} < 40 {\rm Mpc})$	and	$\Omega_{50\%} < 720 \rm deg^2)_{\rm long, short}$	"class IV".

Search for time directional coincidence with 91 GW events from LIGO/Virgo

4 classes defined based on localization and distance 2 time windows: "short" Δt 1000s centered at t_{GW} and "long" Δt 1 day after it

Class IV best for y sources, Classes I-II-III may point to new physics

GW follow-up photon searches

7 events in Class II, 3 in Class I

60

No candidate found for any GW event \rightarrow flux upper limits

First ever limits on y from GW at UHE

GW190728

Inclined shower and UHE Neutrino signature

The EM component in inclined **CR** showers (zenith > 60°) almost completely absorbed by the atmosphere.

On the other hand, neutrinos have younger shower → broader signal in inclined event can be a neutrino signature

3 main channels:

- Down-Going Low (60° -75°)
- **Down-Going High** (75°-90°)
- Earth-Skimming (90°-95°)

UHE Neutrino data selection

1020

- Area over Peak is the sensitive variable
- Cut tuned on all the different channels
- Expected <1 bkg event in 50 years

Exposure dominated by the ES channel
DG channels become relevant at higher energies (ES neutrinos absorbed in Earth)

Diffuse flux limits on UHE Neutrino

Auger Coll., JCAP 10 (2019) 022

– NO candidates found

- Maximum sensitivity at ~ 1 EeV
- Integral upper limits constraints different models.
- Expected up to 6 events in case of pure proton composition, 2 in case of p or mixed, 0.4 in case of pure iron
- Our increase in exposure allow us to disfavour pure proton models

Point like sources of UHE Neutrino

Sensitivity strongly depends on source location and event timing

TXS 0506+056 declination \sim 5.7°, not optimal in all declination channels

TXS 0506+056 was not in our FoV at the time of neutrino detection

Reference flux assuming 1 events in Auger per 0.5 and 15 years

Auger Coll., ApJ 902 (2020) 105

Neutrino follow-up searches: GW170817

Source in the field of view of ES neutrinos

No candidate found in short (±500s) or long (14 days) time windows

Non observation is consistent with the expectation from a sGRB viewed at off-axis angle >20 $^{\circ}$

LVC, Antares, IceCube, Auger, ApJL 850 (2017) L35

BBH follow-up: stacked *v* **searches**

Look for time and directional coincidence with 93 BBH mergers from LIGO/Virgo runs O1-O3

No candidates found for any event inspected

Limits on the total energy emitted in neutrinos is $<5.2 \times 10^{51}$ erg \rightarrow more than 2 orders or magnitude lower than the radiated GW energy

Paper ready for submission

Search for FD up-going air showers

Two "anomalous" events detected by **ANITA** with non-inverted polarity $\rightarrow E \sim 0.2 \text{ EeV}$ exit angle $\sim 30^{\circ}$

Fervent debate about the interpretation

Highly inclined events cannot be observed with SD \rightarrow Dedicated search using 14 years of FD data

FD sensitivity depends on E and H_{fi} of the primary particle

FD sensitivity and candidate selection

Upward-going showers can be misreconstructed as downgoing, so each shower in both data and simulation is reconstructed both in "upward" and downward mode and then compared

Good agreement between data and bkg, expected ~0.27 in the full sample

 \rightarrow 1 "candidate" found in the full sample, compatible with the expected bkg

> $\pi/2$ likelihood of the best L_{down(up)} downward (upward) reconstruction / = 0 downward favoured

 $I \rightarrow 1$ upward favoured

Comparison with ANITA observations

Joint effort with members of the ANITA Collaboration to make an analytic calculation of ANITA exposure for the two anomalous events between 10^{17} eV and $10^{18.5}$ eV with $\theta \in [110^{\circ}, 130^{\circ}]$

Auger upper limits are 100 and 30 times lower than ANITA fluxes (red) in case of and E⁻¹ and E⁻² spectra respectively

2-D Auger exposures can also be used to study interesting BSM scenarios (see PoS(ICRC2023) 1095)

Conclusion

- The Pierre Auger Observatory participates in the joint international effort within the multi-messenger astrophysics community

– Actively sends and receive alerts to/from the GCN; SD data stream is also sent to the AMON and Deeper Wider Faster (DWF)

We have excellent sensitivity to photons and neutrinos in the EeV range

 → the non-observation provides important results, setting stringent limits and constraining
 exotic scenarios

Waiting for AugerPrime high-quality data
 →multi-hybrid events with WCD, SSD, RD, UMD
 →better separation of shower components
 →improved photons/hadrons discrimination

Thank you for your attention!