

Selection of CRE in Fermi-LAT data with Unsupervised Learning techniques

Raffaella Bonino

University and INFN Torino rbonino@to.infn.it

on behalf of the Fermi-LAT Collaboration

State-of-the-art Cosmic Ray Electrons direct measurements

Fermi-LAT as CRE detector

New analysis technique based on Unsupervised Machine Learning Ť

- Method \odot
- Results (based on simulated data) \odot

Conclusions

CRE spectrum in the energy range 100 GeV - few TeVs can provide evidence of local **CRE sources** of astrophysical (SNR & PWN) or exotic origin (DM) $\mathcal S$ are described in detail in the Supplemental Material [20]. $\frac{1}{2}$

Significant differences among some spectra, particularly **at higher energies** where uncertainties are more considerable $\ddot{\bullet}$

Large Area Telescope (LAT):

- 20 MeV to more than 300 GeV
- observes 20% of the sky at any instant
- absolute timing \sim 300 ns

s ermi Gamma-ray Space Telescope

Gamma-ray Burst Monitor (GBM):

- 8 keV to 40 MeV
- observes entire unocculted sky
- absolute timing \sim 2 μ s
- compute burst location **4**

I Pair conversion telescope • Launch: June 11 2008, NASA

The Fermi observation of the Fermi observation of the Fermi of the Technical State o http://fermi.gs/

> t circular 565 km al • **Orbit**: circular, 565 km altitude, 25.6° inclination

The Fermi LAT detector

TRACKER-CONVERTER

• High precision tracking

Sermi Gamma-rav Space Telescope

- 18 x, y tracking planes: Silicon Strip Detector (73 m² of Si active area)
- 16 planes of tungsten conversion foils:
	- $-$ "FRONT" \rightarrow first 12 "thin" layers
	- $-$ "BACK" \rightarrow next 4 "thick" layers
	- ➡1.5 radiation lengths on-axis

ANTICOINCIDENCE DETECTOR

- Charged-particle bkg rejection (with 0.9997 efficiency)
- Plastic scintillator, WLS fibers
- 89 segmented tiles to minimize self-veto at high E

Sermi LAT as electron detector Gamma-ray

Space Telescope

FERMI-LAT (Large**A**rea**T**elescope**)**

- LAT is designed for electromagnetic showers: $\tilde{\bullet}$
	- naturally including electrons ♦
	- **event reconstruction** works also for e⁺e-4

LAT as electron detector Gamma-ray

7 7

Space Telescope

FERMI-LAT (Large**A**rea**T**elescope**)**

Electron identification requires $\breve{\bullet}$ dedicated **event selection**

- $\breve{}$ LAT is designed for electromagnetic showers:
	- naturally including electrons ۵
	- **event reconstruction** works also for e⁺e-

GOAL: identify *electrons and positrons* out of *cosmic rays background* in Ÿ Fermi-LAT data (and compute their energy spectrum)

GOAL: identify *electrons and positrons* out of *cosmic rays background* in Fermi-LAT data (and compute their energy spectrum)

Supervised Learning:

- Boosted Decision Trees: published in 2017
- Neural Networks \rightarrow similar results
- Supervised approach implies training on Monte Carlo simulations:
	- \rightarrow strong dependence on models and simulations quality

→ **sensitive to important systematic uncertainties or biases**

GOAL: identify *electrons and positrons* out of *cosmic rays background* in Fermi-LAT data (and compute their energy spectrum)

Supervised Learning:

pace Telescope

- Boosted Decision Trees: published in 2017
- \odot Neural Networks \rightarrow similar results
- Supervised approach implies training on Monte Carlo simulations:
	- \rightarrow strong dependence on models and simulations quality

→ **sensitive to important systematic uncertainties or biases**

Unsupervised Learning:

- $\sqrt{\ }$ No labels and minimum human supervision:
	- **→** independence of models / MC → **systematic uncertainties reduced**
- **Difficulty:** very different cluster sizes (i.e. background dominant wrt signal)
- **Potential drawback**: irreducible bkg (hadronic shower fluctuating into e.m. shower)

Data set

- ϵ **Data set:** *MC* e⁺e⁻ and *p* with realistic flux ratio (spectral index -3 for *e* and -2.7 for *p*)
- Ę **Energy range:** 70 GeV - 750 GeV
- **Cuts**:
	- basic quality cuts (trigger, filter, track found and minimal PSF quality)
	- remove alphas and heavier ions (residual contamination < few ‰ wrt protons)
	- cut on shower transverse size to reduce the proton background
	- path length $> 12 X_0$ in the CAL

2. **Dimensionality reduction** with UMAP algorithm

3. Agglomerative Hierarchical **Clustering**

4. **Iterations**

highlight the differences in the shower topology between protons and electrons C

Log (shower transverse size)

 1.7

 1.8

 1.9

 2.0

 1.6

 1.5

100

 1.3

1.4

- highlight the differences in the shower topology between protons and electrons
- O avoid highly correlated variables

2. **Dimensionality reduction** with UMAP algorithm ([10.21105/joss.00861](https://joss.theoj.org/papers/10.21105/joss.00861))

- clustering algorithms cannot easily handle variable spaces of high dimensions \bigcirc
	- \rightarrow map data onto lower dimensionality spaces, preserving relationships / patterns

- 1. **Selection of variables**
- 2. **Dimensionality reduction** with UMAP algorithm

3. Agglomerative Hierarchical **Clustering**

- C search for *similarity* in events
- progressively finds the 2 closest differently labeled elements and tag them with the same label until only 2 labels remain \rightarrow separate data into 2 clusters

- 1. **Selection of variables**
- 2. **Dimensionality reduction** with UMAP algorithm
- 3. Agglomerative Hierarchical **Clustering**

- 10 000 data reprocessed x 20 times
- In each of the 20 iterations:
	- \bigcirc 10% of data fixed + 90% changes

- 1. **Selection of variables**
- 2. **Dimensionality reduction** with UMAP algorithm
- 3. Agglomerative Hierarchical **Clustering**

- 10 000 data reprocessed x 20 times
- In each of the 20 iterations:
	- \bigcirc 10% of data fixed + 90% changes

- 1. **Selection of variables**
- 2. **Dimensionality reduction** with UMAP algorithm
- 3. Agglomerative Hierarchical **Clustering**

- 10 000 data reprocessed x 20 times
- In each of the 20 iterations:
	- \bigcirc 10% of data fixed + 90% changes

- 1. **Selection of variables**
- 2. **Dimensionality reduction** with UMAP algorithm
- 3. Agglomerative Hierarchical **Clustering**

- 10 000 data reprocessed x 20 times
- In each of the 20 iterations:
	- 10% of data fixed + 90% changes

→ electrons fraction is estimated

all the outputs for dimensions between 3 and 10 are considered and averaged

- 1. **Selection of variables**
- 2. **Dimensionality reduction** with UMAP algorithm
- 3. Agglomerative Hierarchical **Clustering**

- 10 000 data reprocessed x 20 times
- In each of the 20 iterations:
	- \bullet 10% of data fixed $+$ 90% changes

→ electrons fraction is estimated

- all the outputs for dimensions between 3 and 10 are considered and averaged
- The entire procedure is repeated for:
	- all the considered energy bins
	- 3 different seeds (3 random selection of the fixed dataset) **²¹** \bigcirc

Evaluate the **self-coherence of the algorithm** in order to:

Gamma-ray

- choose the optimal parameters (e.g. samples dimension, nb of iterations, …)
- quantify the **reliability** of each electrons fraction estimation \odot
- Ideal case 500 – Real case 400 **Jumber of events** *How?* By comparing labels assigned to 300 fixed samples through the 20 iterations 200 100 O 0.0 0.2 0.4 0.6 0.8 1.0 Fraction of times a single event of the fixed sample has been labeled as electron-like 15.0 of measures 0.8 12.5 Used to estimate the most probable $\frac{1}{2}$
 $\frac{1}{2}$ Kernel Density Estimation 10.0 Coherence**e+e- fraction** in each energy bin 7.5 5.0 0.2 2.5 0.0 0.0 0.1 0.2 0.3 0.4 0.5 **22**

Electron fractions

- *Predicted* electron fraction is always **compatible** with the *true* value → *irreducible background* doesn't seem to introduce an evident bias
- Results can be considered reliable up to 750 GeV (too few MC events above)

Energy: 70-78 GeV

24

Sermi Results: MC electrons fraction Gamma-ray
Space Telescope

Predicted flux is always **within 1 σ** wrt *true* one (input spectral index = -3) Fluctuations are attributable to the acceptance

- An approach based on **Unsupervised Learning techniques** has been developed for the selection of CRE in Fermi-LAT
- **Feasibility study** successfully accomplished on Monte Carlo data set:
	- electron fraction correctly estimated (always compatible with true value)
	- false positives always lower than 12%
- The method will be **soon applied to experimental data**
- The method could be applied to **other science cases**

ACKNOWLEDGMENTS: this is part of the project "SKYNET: Deep Learning for Astroparticle Physics", PRIN 2022 (CUP: D53D23002610006). **²⁹**

Backup slides

Simulation

- \bullet ~50% of total events are removed, but only a **negligible fraction of e+e- is affected** (between 0 and 0.5%), with not evident dependence on energy.
- Total fraction of electrons goes from 10 to 20%.
- Clustering performance seem to improve significantly.

- Evaluate the **self-coherence of the algorithm** in order to choose the optimal parameters (e.g. samples dimension, nb of iterations, …)
	- *How?* By comparing the labels assigned to the sample of 900 fixed events through the different iterations

- Used to:
	- quantify the **reliability** of each electrons fraction estimation

