AGILE observations of the ultra-luminous GRB 221009A

Giovanni Piano (INAF-IAPS),

Luca Foffano (INAF-IAPS) and Marco Tavani (INAF-IAPS) on behalf of the AGILE Team

> RICAP-24 September 23-27, 2024 Frascati (RM), Italy

Summary

Intro: GRB 221009A, the brightest GRB ever detected

1. The AGILE observations

- Technical issues: complex analysis
- The AGILE lightcurves
- Spectral evolution
- Multiwavelength lightcurve
- 2. Modeling the afterglow
 - New analysis: AGILE simultaneous with LHAASO
 - Modeling the GeV-TeV afterglow spectra

Concluding remarks

GRB 221009A: The brightest of all time (The BOAT)

October 9, 2022 Swift/BAT detects a bright transient emission, subsequently identified as a GRB

- Prompt emission detected by several satellites.
 - T₀ = 2022-10-09 UT 13:16:59.99
 - Duration: ~600 seconds → Long GRB
 - Peak flux = 3 x 10⁻² erg cm⁻² s⁻¹ [Konus-WIND]
 ~10 times higher than GRB 230307A
 - Fluence (600 s) = 0.21 x 10⁻² erg cm⁻² [Konus-WIND]
 ~100 times higher than GRB 140219A
 - $E_{iso} \simeq 10^{55} \text{ erg [Konus-WIND]}$
 - $L_{iso} \simeq 10^{54} \text{ erg s}^{-1} \text{ [Konus-WIND]}$
- Afterglow emission observed from radio to VHE gamma-rays (LHAASO).
- Redshift: $z = 0.15 \rightarrow distance \sim 750 Mpc$

GRB 221009A coordinates

Celestial: (RA, Dec) = (288.27, 19.77) Galactic: (I, b) = (52.96, 4.32)

GRB 221009A: AGILE observations

AGILE Mission

- launch: April 17, 2007
- Pointing: 2007-2009
- Spinning: 2009-2024
- end of the scientific activities : January 18, 2024
- re-entry the Earth's atmosphere: February 13, 2024

GRB 221009A detected by:

- GRID [30 MeV 50 GeV]
- MCAL [350 keV 10 MeV]
- Ratemeters [RM, 50-200 keV]
 - MCAL
 - Anticoincidence (AC)
 - GRID ("unvetoed")
- SuperAGILE not in observing mode

T₀ + [273, 383s] E > 50 MeV (l, b) = (53.1, 4.3) ± 0.1° (stat) ± 0.1° (syst

60

30

GRB 221009A: saturation of the AC-Top RM

GRID: two main analysis issues due to the extraordinarily high count rate of the AC-Top panel (incoming X-rays):

1. Dead time correction (usually not required in standard analysis):

AC-Top activation (charged particle/X-ray) \rightarrow inhibition of the GRID onboard data acquisition: 5.14 μ s

 \rightarrow GRID livetime (exposure) correction

2. AC-Top RM are saturated to 65535 counts/s during two intervals: [220.4, 246.4 s] and [254.4, 272.6s] after T₀

 \rightarrow Both time intervals are excluded from our analysis

(actual number of AC triggers unknown \rightarrow livetime correction would not be accurate)

GRB 221009A: The AGILE lightcurves

GRID Observation Windows (OWs)

Time evolution of the GRID FoV (spinning mode): boresight-axis rotation period \sim 440 s

GRB 221009A: spectral evolution

GRID

104

GRID

104

MCAL-GRID simultaneous spectra prompt + afterglow

GRID spectrum: T₀ + [273, 383s]

- Power-law fit (0.05 50 GeV)
- Significance: 46 σ
- Flux = $(8.4 \pm 0.6) 10^{-3}$ ph cm⁻² s⁻¹
- Photon index = 1.92 ± 0.06
- Associated counts: 206 ± 16

"AGILE Gamma-Ray Detection of the Exceptional GRB 221009A" Tavani, M., Piano, G., Bulgarelli A., et al. ApJL 956, L23 (2023)

GRB 221009A: GRID spectra

Power-law fit:

	Time interval	photon index	flux
	[s, s]		[ph cm ⁻² s ⁻¹]
c1	[273, 303]	1.9 ± 0.1	(1.5 ± 0.2) 10 ⁻²
c2	[303, 383]	2.0 ± 0.1	(5.4 ± 0.6) 10 ⁻³
d	[684, 834]	1.7 ± 0.2	(1.1 ± 0.2) 10 ⁻³
е	[1129, 1279]	2.1 ± 0.4	(1.7 ± 0.8) 10 ⁻⁴
f	[1569, 1719]	2.5 ± 0.5	(1.0 ± 0.5) 10 ⁻⁴

Spectral behavior:

- hardening-softening (hints)
- $t > T_0 + 1000 \text{ s} \rightarrow \text{no HE gamma rays}$ (E > 3 GeV) detected

"AGILE Gamma-Ray Detection of the Exceptional GRB 221009A" Tavani, M., Piano, G., Bulgarelli A., et al. ApJL 956, L23 (2023)

GRB 221009A: multiwavelength lightcurve

- GRID detections of the GRB: from the onset of the prompt phase up to \sim 20 ks after T₀.
- Spinning-modulated continuous coverage.
- Afterglow flux decay: power-law trend consistent with Swift/XRT

"AGILE Gamma-Ray Detection of the Exceptional GRB 221009A" Tavani, M., Piano, G., Bulgarelli A., et al. ApJL 956, L23 (2023)

GRB 221009A: modeling the afterglow

- New specific analysis of the AGILE GeV data \rightarrow simultaneous with the LHAASO TeV data (Cao+ 2023)
- Relativistic fireball model:
 - blast wave expanding in a homogeneous medium
 - adiabatic expansion $\rightarrow e^+e^-$ acceleration (power-law distribution)
 - Synchrotron and inverse Compton emission from accelerated leptons
- Modeling the evolving afterglow spectrum (and lightcurves) at GeV-TeV energies

GRB 221009A: modeling the evolving spectrum

Concluding remarks

The AGILE observations of GRB 221009A

- Complex analysis: months of teamwork, data selection/correction, non-standard data analysis
- AGILE: long-term MeV/GeV observation of the GRB (prompt/afterglow phase)
 - \circ GRID: detection up to ~20 ks after T₀
 - MCAL: detection during the initial phase (up to $T_0 + 445$ s)
 - Scientific RMs: continuous monitoring
- Lightcurves and spectra
- <u>Tavani et al., ApJL 956, L23 (2023)</u>

Modeling the GRB afterglow

- GeV (AGILE) + TeV (LHAASO) simultaneous dataset
- Fireball model: blast wave adiabatically expanding in a homogeneous medium
- Foffano, Tavani and Piano ApJL 973, L44 (2024)

THANKS FOR YOUR ATTENTION