On the challenging problem to estimate the energy of the Ultra High Energy Cosmic Rays

V. Verzi INFN, Roma "Tor Vergata"

September 24th 2024, Hotel Villa Tuscolana, Frascati, Roma

EARLY 2000s

AGASA

- absence of the GZK effect ? Exotic particles ?
- low statistics and wrong energy scale

Fluorescence Detector

FD

AGASA Surface Detector

calorimetric

energy

energy from simulations

hadronic interactions ? primary mass ?

MODERN HYBRID OBSERVATORIES

- significantly better situation but still some tension at the cut-off
- uncertainty in the energy scale (15%-20%) still dominating the one in the flux

MODERN HYBRID OBSERVATORIES

- understanding of the differences important to combine the Auger and TA data (full sky coverage)
- joint Working Groups Auger-TA to combine the data

MUON NUMBER EXCESS

 N_{μ} excess observed by Auger likely due to the hadronic interaction models

FLUORESCENCE DETECTION TECHNIQUE

fluorescence photons emitted from the de-excitation of the atmospheric nitrogen (N₂ excited by δ rays)

ABSOLUTE FLUORESCENCE YIELD

measured in lab

nowadays measured with a <4% uncertainty (AIRFLY)

emission process well understood but too large uncertainty in the theoretical prediction

grey points - old measurements affected by a known bias:

some δ rays escape the detector f.o.v. \rightarrow underestimation of Y_{337}

figure from J. Rosado, F. Blanco and F. Arqueros, ApP 55(2014) 51-62 ELS@TA added by M. Fukushima, GCOS workshop 2022

ABSOLUTE TELESCOPE CALIBRATION

Auger: calibrate the full telescope illuminating uniformly the camera with a calibrated source

TA: 'piece to piece' calibration. Absolute PMT calibration with Rayleigh scattered light from nitrogen laser

TA CRAYS

S. Kawana et al., Nucl. Instrum. Meth. A 681 (2012) 68

AUGER DRUM

J. T. Brack et al., JINST 8 (2013) P05014

AUGER X-Y SCANNER

Christoph M. Schäfer PoS (ICRC2023) 305

uncertainty in shower energy from absolute telescope calibration ~10%

LINAC ACCELERATOR AT THE TA SITE

B. Shin et al., PoS (ICRC2015) 640

- combined effect of fluorescence yield and telescope absolute calibration
- remarkable agreement with AIRFLY
- \rightarrow absolute calibration of the TA telescope well under control

ENERGY SCALE: AUGER vs TA

Auger measurements only above full trigger efficiency 11

ENERGY SCALE: AUGER vs TA

EXTREMELY ENERGETIC EVENTS (> 10²⁰ eV)

Amaterasu	Su TA, Science 382, 903–907 (2023)						aamman	
particle	Time (UTC)	Energy (EeV)	S ₈₀₀ (m ⁻²)	Zenith angle	Azimuth angle	R.A.	Dec.	band !
244 EeV	27 May 2021 10:35:56	244 ± 29 (stat.) $^{+51}_{-76}$ (syst.)	530 ± 57	38.6 ± 0.4°	206.8 ± 0.6°	255.9 ± 0.6°	16.1 ± 0.5°	

From local void. Large magnetic deflections? Physics beyond SM?

Combining Auger and TA data difficult due to the mismatch in the energy scales

see also Auger TA WG on arrival directions, ICRC 2023

166 EeV: most energetic Auger event note: exposure Auger / TA ≈ 6,7 !

energy of the Amaterasu particle at the Auger energy scale would be 154 EeV

 $-9\% - 20\%(\log_{10}E - 19) = -37\%$

	E [EeV]	Dec [deg.]
PAO191110	166	-52
PAO070114	165	-21
PAO200611	155	-48
PAO141021	155	-38
TA Amaterasu	154	16

Auger, Astrophys. J. Suppl. S. 264 (2023) 50 https://opendata.auger. org/catalog/

OTHER SYSTEMATICS NOT RELATED TO FD?

TA

 $\mathbf{E} = \frac{\mathbf{E}^{\mathrm{TBL}}}{\mathbf{1.27}}$

difficult task

- lack of hybrids at the highest energies
- several details on SD and FD rec. maybe important
- e.g.: biases in TA MC energy fully corrected by 1/f?

TA, Science	382,	903-907	(2023)
-------------	------	---------	--------

Amaterasu particle	E ^{TBL} [EeV] from S ₈₀₀ = 530 m ⁻²		
Hadr. Int. model	proton	iron	
QGSJetII-03	309	-	
QGSJetII-04	300	272	
EPOS-LHC	261	240	

 $\mathbf{E} = \frac{\mathbf{E}^{\mathrm{TBL}}}{\mathbf{f}_{\mathrm{model, mass}}}$

mass composition is energy dependent !

V. Novotny, this conference

SHOWER ENERGY WITH THE RADIO DETECTOR

nowadays well understood detection technique being installed in all Auger SD stations M. Roth, this conference competitive energy estimate compared to FD

T. Heuge Phys. Rep. 620, 1-52 (2016)

	FLUORESCENCE	RADIO
yield	measured in lab	QED
emission	isotropic	forward
simulation	no	yes
atmospheric attenuation	yes	no
duty cycle	15%	100% (inclined showers)

25% of e^- over e^+

G. Askaryan, Soviet Phys. JETP 14, 441 (1962)

OUTLOOK

- hybrid detection technique successful
 - uncertainty in the (FD) energy scale $\approx 15\%$
 - hard to improve it (absolute calibration of the telescopes)
- still systematics on energy estimation not understood at the highest energies
 - important to combine the Auger and TA data (full sky coverage)
 - difficult problem (lack of hybrids at highest energies, details in reconstruction, ...)
- future perspectives
 - more statistics with AugerPrime and TAx4
 - better understanding of the systematics
 - scintillators also in Auger
 - radio detector

M. Roth, C. Jui, this conference

END

UNCERTAINTY IN (FD) ENERGY SCALE

AUGER

ICRC 2013 arXiv:1307.5059

Absolute fluorescence yield	3.4%
Fluores. spectrum and quenching param.	1.1%
Sub total (Fluorescence Yield)	3.6%
Aerosol optical depth	3% ÷ 6%
Aerosol phase function	1%
Wavelength dependence of aerosol scattering	0.5%
Atmospheric density profile	1%
Sub total (Atmosphere)	3.4% ÷ 6.2%
Absolute FD calibration	9%
Nightly relative calibration	2%
Optical efficiency	3.5%
Sub total (FD calibration)	9.9%
Folding with point spread function	5%
Multiple scattering model	1%
Simulation bias	2%
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%
Sub total (FD profile rec.)	6.5% ÷ 5.6%
Invisible energy	3% ÷ 1.5%
Statistical error of the SD calib. fit	0.7% ÷ 1.8%
Stability of the energy scale	5%
TOTAL	14%

TA Astropart.Phys. 61 (2015) 93-101

Item	Error (%)	Contributions
Detector sensitivity	10	PMT (8%), mirror (4%),
Atmospheric collection	11	aerosol (10%), Pavleigh (5%)
Fluorescence yield	11	model (10%),
Reconstruction	10	numiaity (4%), atmosphere (3%) model (9%) missing energy (5%)
Sum in quadrature	21	

Aerosols correction larger at larger energies (more far away showers)

but nonlinearity effects can't explain the 20%/decade energy shift

> D. Ivanov, UHECR 2018 V. Harvey, ICRC 2023

TA 21% both almost energy independent Auger 14%

Auger-TA Common Declination Band Spectrum Analysis

- Restrict δ to [-15°, 24.8°] range
 - Excludes TA hot spot
- Inependence of exposure on declination (aka "1/ω method"):

$$J_{1/\omega}(E) = \frac{1}{\Delta \Omega \Delta E} \sum_{i=1}^{N} \frac{1}{\omega(\delta_i)}$$

(UHECR 2016 proceedings)

Discrepancy persists also considering the different shape of the the directional exposure 19

Auger and TA, UHECR 2022

20

Auger and TA, UHECR 2022

