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Context and Research Goals
● This research aims to develop Deep Learning (DL) and Quantum Deep Learning models to 

analyze the data acquired by the AGILE instruments to detect and localize Gamma-Ray Bursts.

● We developed DL models to analyze sky maps as 2D images and time series acquired by the 
AGILE detectors.

 
● In addition, we are developing a DL model for COSI to localize the GRBs using simulated data 

acquired by its detectors. 

● We approached different classes of problems:

○ Binary Classification
○ Anomaly Detection
○ Regression  
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AGILE satellite
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● AGILE is an ASI space mission launched in 2007, designed to study X-ray and 
gamma-ray astronomy. AGILE terminated the in-orbit operations on February 
2024, after almost 17 years of successful scientific observations.



COSI satellite
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● The Compton Spectrometer and Imager (COSI) 
is a NASA Astrophysics Small Explorer satellite 
mission.

● COSI is a soft gamma-ray survey telescope 
(0.2-5 MeV) planned for launch in 2027.

● It is designed to probe the origins of Galactic 
positrons, uncover the sites of nucleosynthesis in 
the Galaxy, perform pioneering studies of 
gamma-ray polarization, and find counterparts 
to multi-messenger sources. 

● COSI’s compact Compton telescope combines 
improvement in sensitivity, spectral resolution, 
angular resolution, and sky coverage to 
facilitate groundbreaking science.  

COSI Instrument

GeDs

BGO

https://cosi.ssl.berkeley.edu/


Deep Learning Models for AGILE
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Detection and localization of GRBs in Sky Maps
● We developed two Convolutional Neural Networks (CNN) to detect and localize 

GRBs from the AGILE/GRID counts maps.

● We simulated three datasets with 40 000 maps for the training, testing, and 
validation phases. The CNN is trained with a supervised learning technique, so 
the datasets are labeled.  

● We evaluated the CNN using the catalogs of other space missions detecting  21 
GRBs with a sigma > 3 while the standard Aperture Photometry analysis detects 
only two GRBs.

● The localization is executed with a CNN to perform a regression on the 
coordinates of the GRBs with a mean error of 0.7 degrees.

Parmiggiani N. et al. A Deep Learning Method for AGILE/GRID Gamma-ray Bursts detection, Astrophysical Journal, 
Volume 914, Issue 1, id.67, 12 pp (2021)

Parmiggiani N. et al. Preliminary Results of a New Deep Learning Method to Detect and Localize GRBs in the 
AGILE/GRID Sky Maps. proceedings of the ADASS XXXII (2022) conference arXiv 6

https://iopscience.iop.org/article/10.3847/1538-4357/abfa15/pdf
https://arxiv.org/abs/2302.10557


Anomaly Detection in time series 

● We implemented a Convolutional Neural Network autoencoder to 
detect GRBs in the ratemeters of the AGILE Anticoincidence System 
(ACS).

● The autoencoder aims to reconstruct the input data, minimizing the 
reconstruction error, and can be used for anomaly detection.

● We trained the model using an unsupervised technique using 5000 
background-only time.

● We evaluated the trained model using GRBs detected by other 
space missions, and the model detected 72 GRBs, 15 of which were 
detected for the first time in the AGILE data.

Parmiggiani N., Bulgarelli A., Ursi A. et al. “A Deep-learning Anomaly-detection Method to Identify Gamma-Ray 
Bursts in the Ratemeters of the AGILE Anticoincidence System”, Astrophysical Journal, Volume 945, (2023)
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https://iopscience.iop.org/article/10.3847/1538-4357/abfa15/pdf


Deep Learning to predict the ACS background
● Goal: predict the background count rates of the AGILE ACS system 

using the satellite orbital and attitude parameters. 

● We calculated the difference between the real and predicted 

counts of the test dataset to check the accuracy of the model.  The 

model has a mean prediction error of 3.8%.

● We can use the predicted counts of the background to detect 

GRBs where the differences with the acquired counts are higher 

than a predefined threshold.

● We can apply this detection method to raw data without applying 

the detrending algorithm that can introduce artificial anomalies.
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Similar approach used by R. Crupi et al.  Searching for long faint astronomical high 

energy transients: a data driven approach. EA 2023

https://link.springer.com/article/10.1007/s10686-023-09915-7


Detect GRBs using the predicted values

● We tested this detection method using the GRB web catalog 
and extracting light curves from the ACS archive (2019-2022).

● The method detects 39 GRBs with sigma > 3. Four GRBs are 
new detections that were not detected in previous analyses.

● We also compared the results obtained with the light curve of 
the Fermi/GBM detector because they have a similar energy 
range. ACS (50-200 keV) and Fermi/GBM (50-300 keV)

● We are investigating other possible applications of this kind of 
Deep Learning model to predict the background level of the 
AGILE detectors.
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Parmiggiani N., et al. “A New Deep Learning Model to Detect Gamma-Ray Bursts in the AGILE Anticoincidence System”, 
Astrophysical Journal, Volume 973, (2024)

https://iopscience.iop.org/article/10.3847/1538-4357/ad64cd


Deep Learning to simulate GRB light curves

● Goal: simulate the light curves of GRBs using Deep Learning generative architectures such as Generative 

Adversial Network (GAN) and Variational Autoencoder (VAE).

● The training of the DL model is done using the light curves of the fourth Fermi-GBM GRB catalog after 

applying filters to remove light curves not suitable for this study.

● There is a work in progress to use conditional/controlled GAN to use other parameters such as the fluence 

and the t90 as input of the model to generate a specific class of GRBs.
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Quantum Computing and Deep Learning

● Goal: develop Quantum Neural Networks to exploit Quantum Computer features to improve the Deep 

Learning models. 

● We implemented Quantum CNN models and compared the results obtained between quantum and 

classical models. For now, we simulated the Quantum Computers using frameworks such as Qiskit.

● In the future, we have to test these models with 

real Quantum Computers to verify these results. 

● The results obtained with simulated Quantum 

Neural Networks achieve an accuracy comparable 

to that of classical Deep Learning models.

11INAF Spoke 10 (quantum computing) members: A. Bulgarelli, C. Burigana, V. Cardone, F. Farsian, M. Meneghetti, G. Murante, A. 
Rizzo, R. Scaramella, F. Schillirò, V. Testa, T. Trombetti.

Credits: A. Rizzo



Deep Learning for COSI GRB localization
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Localization of GRBs using BGO and GeDs data

● The model aims to localize the GRBs using the count rates 

of the BGO shield composed of five panels.

● In addition, to improve the results, we used the counts 

detected by the Germanium detectors (GeDs).

● We simulated 50 000 GRBs (without background) at 

different sky coordinates to create our labeled dataset.

● We calculated the ratios between the integral of counts 

detected by different panels to have a measure 

independent from the flux of the GRB.

● These ratios are the input of the DL model and the GRB 

positions are the labels.
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Additional data: GeDs counts

● We can add the counts collected by the GeDs to improve the 
localization when the angle Theta < 60° (see figure). 

● We use the four columns of GeDs divided into two layers -> 8 count rates 
and we calculate the ratios between these count rates

14

Theta
GRB



Model Training and evaluation
● The model is implemented using a feedforward neural network with four hidden 

layers. We use dropout layers for the regularization and to prevent overfitting. 

● After the training, we evaluated the model using the test dataset.

● The results with BGO data only have an issue at Theta near 45 ° but by adding the 

GeDs data this issue is solved.

With GeDs: mean error is 4.8°
Loc. error at 40-50° is 8.4°Only BGO: mean error is 6.8°

Loc. error at 40-50° is 30°
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Summary and Results

● With the current simulations (without background) the model can localize a GRB 

with a mean localization error of 4.8° using the data of BGO and GeDs.

○ These position determinations will complement COSI's Compton localizations.

● When Theta ≈ 45° the BGO data cannot localize the source with a low error. We 

introduced the GeDs counts to help the model reduce the localization error from 

30 to 8.4°.

● In future work, we have to evaluate the impact of the background on the 

localization error. Currently, the COSI team is simulating a background dataset that 

we will use for the evaluation.
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Conclusions
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Conclusions and Future Works
● We developed Deep Learning and Quantum Deep Learning models to detect GRBs in the 

sky maps and time series generated with the data acquired by the detectors onboard the 
AGILE space mission.

● The results obtained prove the capability of neural networks to analyze high-energy 
astrophysical data, and in the analyzed context, they outperform classical analysis methods.

 
● We developed a Deep Learning model to localize the GRBs using the COSI BGO and GeDs 

simulated data. We still have to evaluate the impact of the background noise. 

● Our goal is to use the knowledge acquired during the development of Deep Learning models 
for AGILE for the next generation of high-energy projects such as COSI.
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Thank You!


