The AugerPrime extension of the Pierre Auger Observatory

Julian Rautenberg For the Pierre Auger Collaboration

VEGETTA

AugerPrime – Science Case

RICAP-2024

Design Report: arxiv 1604.03637

1. Mass composition and origin of flux suppression

2.Cosmic Rays Astronomy only at highest energies and with protons

3. Hadronic interaction in extensive air shower development

Requirement of event-by-event composition sensitivity

Event-by-Event Composition Sensitivity

- Fluorescence Detector with X_{max} sensitivity, but only ~15% duty cycle
- How to increase sensitivity with particles?

- Review process with different proposals:
 - underground muon detector
 - below WCD RPC Detector
 - segmented tank
 - scintillator on top

Design Report: <u>arxiv 1604.03637</u> RICAP-2024

Event-by-Event Composition Sensitivity

- Fluorescence Detector with X_{max} sensitivity, but only ~15% duty cycle
- How to increase sensitivity with particles?

Design Report: <u>arxiv 1604.03637</u> RICAP-2024

Scintillator Surface Detector

24 scintillating bars, 5 cm x 160 cm x 1 cm Wavelengthshifting fibre collected in "cookie" Hamamatsu R9420 PMT + ISEG Base Aluminium casing + sun-shadow roof

julian.rautenberg@uni-wuppertal.de

RICAP-2024

Scintillator Surface Detector

External detectors (RPC)

SSD Detectors

External detectors (RPC)

RICAP-2024

Collaborative production & testing of 1500 SSD

Production sites: Karlsruhe, Lecce, Krakow, Nijmegen, Grenoble, Aachen

PMT-Testing sites: Wuppertal, Naples

2 0.975 Australia 0.950

0.925

julian.rautenberg

Fit: Issu=177.2±1.4 mA

125 150 175

Upgrade of Electronics

- Upgrade Unified Board (UUB) to combine 3 previous PCBs
- Increase in digitization: 6×40 MHz, $10 \text{ bit} => 10 \times 120$ MHz, 12 bit
- Digital port for external ADC externsion (RD,UMD)
- Increased logics: Xilinx Zynq-7020 All Programmable SoC (Artix-7 FPGA + associated Cortex A9 Dual 333 MHz ARM co-processor)
- Board production A4F
 (formerly SITAEL)
- Extensive testing @ Prague
- Extension of dynamic range by adding a small PMT
 - Hamamatsu R8619,
 - passive base
 - CAEN A7501 HV supply
 - all tested in Naples

julian.rautenberg@uni-wuppertal.de

AugerPrime Surface Detector Electronics P. Abdul Halim et al. (Pierre Auger Collaboration), RICARJ2025T 18 (2023) P10016 7

Deployment SSD / UUB

Time-lapse 01/09/2018 to 22/03/2023 purple : WCD sending T2 yellow : with SSD orange : pre-production array red : with UUB

Performance SSD/WCD

- Good agreement of SSD and large/small PMT of WCD
- No saturation down to 250m
- PoS(ICRC2023)34

Underground Muon Detector

3x 10 m² scinntillator per station
Each module "counting" muons in 64 strips
Deployement on the 750m + 433m grid, 23 km²
Connected to digital port of UUB
49 Stations installed

Radio

SALLA Antenna based on development for AERA 2012 JINST 7 P10011 20

LNA with 18.2 dB gain in 30 – 80 MHz, 0.2 W

SD electronics Mainlobe ctrl GPS (timing) data ADC UUB communications triggei 1:3-Balun filter amplifier system Transforme battery SALLA solar panel Ø < λ/4 (100 cm) ≈ 500 Ω new project existing Load

Front-end electronic board, 2.4 W Filter-amplifier and 2x 250 MHz 12 bit ADC Connected to digital port of UUB

Mechanical structure to mount on SD-clams

julian.rautenberg@uni-wuppertal.de

RICAP-2024

SALLA Antenna based on development for AERA 2012 JINST 7 P10011 20

LNA with 18.2 dB gain in 30 – 80 MHz, 0.2 W

Front-end electronic board, 2.4 W Filter-amplifier and 2x 250 MHz 12 bit ADC Connected to digital port of UUB

Mechanical structure to mount on SD-clams

Radio Deployment

julian.rautenberg@uni-wuppertal.de

RICAP-2024

Radio first results

SD RD Largest Radio CR detector 156.99±0.01 Azimuth (deg) 157 ± 0.1 Zenith (deg) 84.7±0.01 84.7±0.1 (deployment ready 2024-10) 10 36.23 ± 3.34 38.55 ± 2.92 Energy (EeV) Core X (km) -19.8 -17.40 ± 0.88 First promising data -8.73 -9.78±0.45 Core Y (km) C 100 Full reconstruction working y (km) me 80 Good agreement with SD sn) -1020.0 60 Events $68^{\circ} < \theta < 80^{\circ}$ 19.8 Data 09/2023-08/2024 78 RD EM energy [eV] 19.4 19.2 19.0 19.0 18.8 18.8 1:1-line 40 20 76-Zenith Angle [20 Core RD Core SD -30 10 -30-200 -1018.6 2024-04 x (km) 70 18.4 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 WCD energy [eV] RICAP-2024 14 julian.rautenberg@uni-wuppertal.de

Radio first results

Summary

AugerPrime extension is almost ready deployed

- Surface Szintillator Detector (SSD)
- upgraded Electronics (UUB)
- Radio Detector
- dynamic range extension (small PMT)
- Underground Muon Detector sub-array (UMD)

First data promising, complete integration ongoing

Getting ready for Auger Phase 2