Global fit of UHECR spectrum, composition & anisotropies measured at the Pierre Auger Observatory

Teresa Bister RICAP, Rome, September 2024

Modeling UHECRs from sources to detection

Modeling UHECRs from sources to detection

Combined fit of spectrum and composition

Combined fit of spectrum and composition

- injection: Peters cycle + broken exp. cutoff
- two populations of **extragalactic sources**

• injection: Peters cycle + broken exp. cutoff

two populations of extragalactic sources

Combined fit of spectrum and composition

rigidity cutoff

spectral index

- → very soft spectrum
- \rightarrow rigidity cutoff unconstrained

high-energy component:

- \rightarrow very hard spectrum $\chi < 0$
- → low rigidity cutoff ~1 EV

Combined fit of spectrum and composition

Adding arrival directions as an observable

What do the arrival directions look like at ~40 EeV?

→ see Federico Mariani's talk later today

sky in cosmic rays at E > 40 EeV:

What do the arrival directions look like at ~40 EeV?

Nearby starburst galaxies or active galactic nuclei could explain the measured arrival directions based on their directions & fluxes

TB for the Pierre Auger Collaboration, PoS ICRC 2023 The Pierre Auger Collaboration JCAP01(2024)022

Adding arrival directions to the model

Best-fit model: arrival directions

Centaurus A

Starburst Galaxies

Best-fit model: arrival directions

TB for the Pierre Auger Collaboration, PoS ICRC 2023 The Pierre Auger Collaboration JCAP01(2024)022

Best-fit model: arrival directions

Radboud University

What about lower energies?

Cosmic-ray sky at E > 8 EeV:

- dipole with significance >5σ
- no significant quadrupole or higher moments
- not aligned with Galactic center
 - sources extragalactic!

sources at lower energy:

- → larger horizon
- more sources contribute, not dominated by nearby candidates

dipole can be explained by extragalactic sources following the large-scale structure of the universe

+ deflection by Galactic magnetic field

e.g. Ding, Globus, Farrar ApJL 913 L13 (2021) Globus, Piran, Hoffman, Carlesi, Pomarede MNRAS 484 (2019) Allard, Aublin, Baret, Parizot A&A 664 A120 (2022) The Pierre Auger Collaboration arXiv:2408.05292

Model for large-scale anisotropies >8 EeV

Best-fit model: predictions

Using new magnetic field models

8 new GMF models recently became available (UF23)

- all predict the dipole direction close to measured one!
 - → but none fits perfectly at all energies
- models quite similar
 - uncertainties on GMF (random & turbulent) do not obstruct conclusions on sources
 - → cannot reject any model
- biggest uncertainty: from cosmic variance

What value is realistic for the source density n?

n = 10⁻³ Mpc⁻³

Unger & Farrar, ApJ 2024 970 95

Teresa Bister | 24.09.2024 | slide 18

Radboud University

- → rare sources (e.g. starbursts) \leftrightarrow strong EGMF
 - → max. 3 nG Mpc^{1/2}
- negligible EGMF ↔ sources must be common, (e.g. Milky-Way-like galaxies)
 - or: frequent in case of transients like BH-NS mergers, tidal disruption events

Radboud University

Conclusions

• Global fit of spectrum, composition <u>& arrival directions</u> can constrain models for UHECR origin

- → >8 EeV: sources most likely follow large-scale structure
 - can infer information on cosmic magnetic fields & source number density

- >40 EeV: individual source candidates describe data
 - → starburst galaxies, Centaurus A, ~4.5σ significance

Backup

The Pierre Auger Observatory

- largest observatory for UHECRs in the world (3000 km²)
- located in Argentina, close to Malargüe

AugerPrime upgrade

Pierre Auger Collaboration arXiv:2404.03533

Combined fit of spectrum and composition including EGMF

- extragalactic magnetic field can suppress lower energy particles (diffusion)
- include suppression factor G
 - +2 parameters (critical energy + norm. source density)

EGMF can have strong effect on injection, but only for:

- steep injection cutoff
- & source densities < 10⁻³ Mpc⁻³
- & very strong field strengths B~10-200 nG between nearest sources & Earth
- then: can reach γ=2

Modeling 3 observables

energy spectrum

shower depth distributions

- energy spectrum
 sum over detected particles
- fold with detector resolution
- Poissonian likelihood

- parameterize with Gumbel distributions (EPOS-LHC)
- fold with detector resolution & acceptance
- Multinomial likelihood function

arrival directions

- likelihood function similar to previous analyses
- but: pdf energy dependent
- in healpy pixels p & energy bins e:

 $\mathcal{L}_{\mathrm{AD}} = \left[\begin{array}{c} \\ \end{array} \right] \left[\begin{array}{c} \mathrm{pdf}^{e,p}(v^{e,p}) \end{array} \right]$

Teresa Bister | 24.09.2024 | slide 27

Radboud University

dashed line =

Best-fit model: spectrum

- best-fit: hard injection spectrum dN/dE ~ E⁻¹, N-dominated, 20° magnetic field blurring for proton with 10 EeV
- signal fraction ~20% from SBGs, 3% from Centaurus region (at 40 EeV, increases with E)
 - independent of evolution & systematic effects

Test statistic

	SBG	Cen A (flat)	Cen A (SFR)
$\mathrm{TS}_{\mathrm{tot}}$	25.6	17.3	19.1
TS_E	-4.5	-1.4	-1.1
$\mathrm{TS}_{X_{\mathrm{max}}}$	2.0	0.2	1.0
$\mathrm{TS}_{\mathrm{ADs}}$	27.1	18.7	19.0

compare likelihood to ref. model (just background sources):

SBG model has highest TS = 25.6 \leftrightarrow 4.5 σ

- including experimental systematic effects
- increase compared to AD-only correlation
- Centaurus region contributes dominant part: TS~20
- (E-dependent) arrival directions most important

- sum over E bins gives total TS
- peaks could be from He, N, Si
 - → but: large uncertainties

Best-fit model: predictions

Extragalactic magnetic field effect

Further results for UF23 GMF models

